Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (8): 1563-1571    DOI: 10.3785/j.issn.1008-973X.2019.08.015
Electric Engineering, Mechanical Engineering     
Wind tunnel simulation on contamination distribution of cantilever composite insulator with booster sheds
Hai-yan DONG1(),You-peng ZHANG1,*(),Shao-yuan LI2,Hai-long DONG3
1. School of Automation and Electrical Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, China
2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3. State Grid Linxia Electric Power Company, Linxia 731100, China
Download: HTML     PDF(1372KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The booster sheds were installed at the electric field turning point of the clean composite insulator to improve the anti-contamination ability of insulator and increase the creeping distance, thereby improving the external insulation property from the source. The purpose was to improve the anti-contamination effect of cantilever composite insulator for overhead contact system in the heavy contaminated area of the salt-lake, and further reduce pollution flashover accidents. A multi-field and single-phase coupling finite element model of contamination insulator in wind tunnel was established by using COMSOL Multiphysics electric field, flow field and particle tracking field, based on the theories of power frequency electromagnetic field and gas-particle two-phase flow. The effects of suspension mode and environmental factors on the contamination characteristics were analyzed numerically, taking the collision coefficient and the distribution coefficient as the characterization parameters of insulator contamination. Results showed that the collision coefficient increased with the increase of wind speed and increased first and then decreased with the increase of particle size, when the insulator was installed horizontally or obliquely. The collision coefficient reached minimum when the wind direction was 0°. The effect of suspension mode on the collision coefficient was greater when the wind speed or particle size was larger or the change range of wind direction was between negative thirty degree and thirty degree. The relationship between the distribution coefficient of the sheds and the wind direction was in line with the " γ” type when the wind speed was 30 m/s and the particle size was 15 μm. The collision coefficient between the two booster sheds and the collision quality of the single shed adjacent to the booster sheds greatly reduced with the installation of the booster sheds.



Key wordscantilever composite insulator      booster shed      suspension mode      contamination characteristics      numerical analysis     
Received: 08 January 2019      Published: 13 August 2019
CLC:  TM 852  
Corresponding Authors: You-peng ZHANG     E-mail: donghaiyancool@126.com;zhangyp@mail.lzjtu.cn
Cite this article:

Hai-yan DONG,You-peng ZHANG,Shao-yuan LI,Hai-long DONG. Wind tunnel simulation on contamination distribution of cantilever composite insulator with booster sheds. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1563-1571.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.08.015     OR     http://www.zjujournals.com/eng/Y2019/V53/I8/1563


超大伞裙腕臂复合绝缘子积污分布的风洞模拟

为了提高盐湖重污区接触网腕臂复合绝缘子的防污效果,降低污闪事故率,在清洁复合绝缘子的电场转折点处加装超大伞裙,以提高绝缘子防污能力和增大绝缘子的爬电距离,从源头改善绝缘子的外绝缘性能. 以工频电磁场理论和气固两相流理论为基础,采用COMSOL Multiphysics电场、流场及粒子追踪场等建立多场单相耦合的绝缘子风洞积污有限元模型. 将碰撞系数和分布系数作为绝缘子积污量的表征参数,利用数值模拟分析布置方式和环境因素对积污特性的影响. 结果表明, 在平、斜安装下,碰撞系数随风速的增大而增大,随粒径的增大呈现先增大后减小的趋势;当风向为0°时,碰撞系数最小;当风速越大或粒径越大或风向为[0°, ±30°]时,布置方式对碰撞系数的影响越明显;当风速为30 m/s、粒径为15 μm时,伞裙表面的分布系数与风向的关系符合“γ”型分布. 通过加装超大伞裙,两超大伞裙间的碰撞系数及与超大伞裙相邻的单个伞裙表面的碰撞质量大大减小.


关键词: 腕臂复合绝缘子,  超大伞裙,  布置方式,  积污特性,  数值分析 
Fig.1 Composite insulator for overhead contact system cantilever of FQB 25 type
Fig.2 Average electric field distribution characteristics of insulator sheds
Fig.3 Cantilever composite insulator with booster sheds
参数 取值 参数 取值
H/mm 895 D2/mm 181
s/mm 620 D1/mm 141
l/mm 2 050 αu/(°) 9
D3/mm 229 αd/(°) 6
Tab.1 Structural parameters of composite insulator with booster sheds
Fig.4 Contamination model of insulators in wind tunnel
Fig.5 Mesh division section of computing area of insulator wind tunnel
Fig.6 Relation between particle collision coefficient and wind speed on insulator
Fig.7 Relation between particle collision coefficient and wind direction on insulator
Fig.8 Relation between particle collision coefficient and particle size on insulator
Fig.9 Local structure diagram of shed sheath
Fig.10 Relation between particle distribution coefficient and wind direction on insulator
Fig.11 Relation between particle distribution coefficient and wind direction on insulator shed
Fig.12 Collision characteristics of particles on insulator shed in horizontal suspension
Fig.13 Collision characteristics of particles on insulator shed in oblique suspension
[1]   ZHANG Z J, QIAO X H, YANG S H, et al Non-uniform distribution of contamination on composite insulators in HVDC transmission lines[J]. Applied Sciences, 2018, 8: 1962
doi: 10.3390/app8101962
[2]   孙忠国, 张文轩, 王卫东 电气化铁路接触网绝缘子污闪预警检测技术综述[J]. 中国铁路, 2016, (10): 68- 72
SUN Zhong-guo, ZHANG Wen-xuan, WANG Wei-dong A review of researches on the pollution flashover early warning detection technology for OCS insulator in electrified railway[J]. China Railway, 2016, (10): 68- 72
doi: 10.3969/j.issn.1001-683X.2016.10.018
[3]   吕玉坤, 赵伟萍, 庞广陆, 等 典型伞型瓷及复合绝缘子积污特性模拟研究[J]. 电工技术学报, 2018, 33 (1): 209- 216
LV Yu-kun, ZHAO Wei-ping, PANG Guang-lu, et al Simulation of contamination deposition on typical shed porcelain and composite insulators[J]. Transactions of China Electrotechnical Society, 2018, 33 (1): 209- 216
[4]   BYCHKOV P N, ZABRODINA I K, SHLAPAK V S Insulation contamination of overhead transmission lines by extreme service conditions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23 (1): 288- 293
doi: 10.1109/TDEI.2015.005323
[5]   郝艳捧, 熊国锟, 刘芹, 等 基于有限元法的染污直流支柱复合绝缘子伞裙参数优化[J]. 中国电机工程学报, 2013, 33 (22): 183- 190
HAO Yan-peng, XIONG Guo-kun, LIU Qin, et al Optimization of shed parameters of polluted DC post composite insulators based on finite element method[J]. Proceedings of the CSEE, 2013, 33 (22): 183- 190
[6]   李字明, 里文淼, 王志伟, 等 高寒区交流复合绝缘子积污特性[J]. 高压电器, 2017, 53 (5): 96- 102
LI Zi-ming, LI Wen-miao, WANG Zhi-wei, et al Contamination characteristics of AC composite insulator in high-cold area[J]. High Voltage Apparatus, 2017, 53 (5): 96- 102
[7]   李立浧, 王振华, 廖一帆, 等 基于电场仿真的淋雨状态下大直径复合支柱绝缘子伞裙参数优化[J]. 高电压技术, 2017, 43 (6): 1930- 1936
LI Li-cheng, WANG Zhen-hua, LIAO Yi-fan, et al Shed parameter optimization of large-diameter composite post insulators under wet condition based on electric field simulation[J]. High Voltage Engineering, 2017, 43 (6): 1930- 1936
[8]   谷裕, 阳林, 张福增, 等 高海拔地区特高压换流站大尺寸复合支柱绝缘子直流污闪特性[J]. 电工技术学报, 2016, 31 (10): 93- 101
GU Yu, YANG Lin, ZHANG Fu-zeng, et al DC pollution flashover performance of ultra high voltage convert stations large-size composite post insulators at high altitude areas[J]. Transactions of China Electrotechnical Society, 2016, 31 (10): 93- 101
doi: 10.3969/j.issn.1000-6753.2016.10.011
[9]   ZHANG F Z, WANG L M, GUAN Z C, et al Influence of composite insulator shed design on contamination flashover performance at high altitudes[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18 (3): 739- 744
doi: 10.1109/TDEI.2011.5931060
[10]   谷裕, 郝艳捧, 何秋萍, 等 高海拔特高压复合支柱绝缘子伞形结构对直流污闪特性的影响[J]. 电网技术, 2014, 38 (10): 2867- 2874
GU Yu, HAO Yan-peng, HE Qiu-ping, et al Study of the influence of shed shapes of UHV composite post insulators on DC pollution flashover performance at high altitude[J]. Power System Technology, 2014, 38 (10): 2867- 2874
[11]   李耀中, 鲁建 加装超大伞裙的复合绝缘子的应用研究[J]. 电网技术, 2006, 30 (12): 102- 105
LI Yao-zhong, LU Jian Study of application of adding extra large shed to top of composite insulators[J]. Power System Technology, 2006, 30 (12): 102- 105
doi: 10.3321/j.issn:1000-3673.2006.12.022
[12]   江全元, 晏鸣宇, 周志宇, 等 重覆冰地区超大伞裙结构复合绝缘子的仿真及优化设计[J]. 电网技术, 2015, 39 (7): 2064- 2068
JIANG Quan-yuan, YAN Ming-yu, ZHOU Zhi-yu, et al Numerical simulations and optimal design of composite insulator with extra large sheds under heavy icing condition[J]. Power System Technology, 2015, 39 (7): 2064- 2068
[13]   梅红伟, 陈金君, 彭功茂, 等 复合绝缘子加装超大伞裙结构的污闪特性[J]. 高电压技术, 2011, 37 (3): 606- 612
MEI Hong-wei, CHEN Jin-jun, PENG Gong-mao, et al Pollution flashover characteristics of composite insulators installed extra large sheds[J]. High Voltage Engineering, 2011, 37 (3): 606- 612
[14]   ALE-EMRAN S M, FARZANEH M Parametric studies and improved hypothesis of booster-shed effects on post insulators under heavy icing conditions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22 (1): 420- 427
doi: 10.1109/TDEI.2014.004619
[15]   ALE-EMRAN S M, FARZANEH M Dimensioning of booster sheds for icing protection of post station insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21 (6): 2576- 2583
doi: 10.1109/TDEI.2014.004469
[16]   张柳, 巢亚锋, 黄福勇, 等 布置方式对染污绝缘子污闪电压影响综述[J]. 中国电力, 2016, 49 (6): 95- 100
ZHANG Liu, CHAO Ya-feng, HUANG Fu-yong, et al A review of researches on the influence of insulator configuration on pollution flashover voltage of polluted insulator[J]. China Electric Power, 2016, 49 (6): 95- 100
[17]   李少鹏, 邓洪, 古晓东 接触网腕臂结构系统动力学分析[J]. 铁道标准设计, 2015, (11): 135- 137
LI Shao-peng, DENG Hong, GU Xiao-dong Dynamic analysis of cantilever structure of OCS[J]. Railway Standard Design, 2015, (11): 135- 137
[18]   王福军. 计算流体动力学分析CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 113-124.
[19]   RUDINGER G. Fundamentals of gas particle flow [M]. Amsterdam: Elsevier, 1980: 7-37.
[20]   ZHANG Z J, YOU J W, ZHAO J Y, et al Contamination characteristics of disc-suspension insulator of transmission line in wind tunnel[J]. IET Generation, Transmission and Distribution, 2017, 11 (6): 1453- 1460
doi: 10.1049/iet-gtd.2016.0942
[21]   王黎明, 刘霆, 梅红伟 基于计算流体力学的支柱绝缘子积污特性研究[J]. 高电压技术, 2015, 41 (8): 2742- 2749
WANG Li-ming, LIU Ting, MEI Hong-wei, et al Research on contamination deposition characteristics of post insulator based on computational fluid dynamics[J]. High Voltage Engineering, 2015, 41 (8): 2742- 2749
[22]   朱彦 兰新高速线动车组设计环境参数探讨[J]. 大连交通大学学报, 2014, 35 (5): 25- 28
ZHU Yan Research of environmental parameters on the EMU design of Lanzhou-Xinjiang high-speed railway[J]. Journal of Dalian Jiaotong University, 2014, 35 (5): 25- 28
doi: 10.3969/j.issn.1673-9590.2014.05.007
[23]   张燕, 苏建军, 刘辉, 等 直流线路绝缘子自然积污污秽颗粒粒径分布特征[J]. 高电压技术, 2017, 43 (9): 173- 180
ZHANG Yan, SU Jian-jun, LIU Hui, et al Particle size distribution characteristics of naturally polluted insulators in service of HVDC transmission line[J]. High Voltage Engineering, 2017, 43 (9): 173- 180
[24]   徐森, 仵超, 李少华, 等 雾霾期间绝缘子的积污特性研究[J]. 中国电机工程学报, 2017, 37 (7): 2142- 2150
XU Sen, WU Chao, LI Shao-hua, et al Research on pollution accumulation characteristics of insulators during fog-haze days[J]. Proceedings of the CSEE, 2017, 37 (7): 2142- 2150
[25]   HORENSTEIN M N, MELCHER J R Particle contamination of high voltage DC insulators below corona threshold[J]. IEEE Transactions on Electrical Insulation, 1979, 14 (6): 297- 305
[26]   李恒真, 赖江宇, 雷乾, 等 污秽颗粒在绝缘表面的碰撞和吸附[J]. 高电压技术, 2012, 38 (10): 2596- 2603
LI Heng-zhen, LAI Jiang-yu, LEI Qian, et al Collision and adsorption of pollution particles on the surface of electrical insulator[J]. High Voltage Engineering, 2012, 38 (10): 2596- 2603
[1] Dao-sheng LING,Qi-xi JIANG,Yu ZHAO. Numerical simulation of entrainment effect of debris flow considering entraining substrate material[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2067-2075.
[2] Zhan-hao HU,Jun-tao FENG,De-ren SHENG,Jian-hong CHEN,Wei LI. Numerical simulation for vibration of interferometric probein wet steam flow field[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1157-1163.
[3] ZHANG Li-dong, WEI Qing-wen, WANG Qing. Influence of flights' shape on motion and mixing of binary particles in rotary retort[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1542-1550.
[4] NING Zhi yuan, SHEN Xin jun, LI Shu ran, YAN Ke ping. Numerical analysis of turbulence field and particle trajectory inside wet Electrostatic Precipitator[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 384-392.
[5] CHEN Ren peng, MENG Fan yan, LI Zhong chao, YE Yue hong, HU Qi. Considerable displacement and protective measures for metro tunnels adjacent deep excavation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 856-863.
[6] ZHOU Jia jin, WANG Kui hua, GONG Xiao nan, ZHANG Ri hong,YAN Tian long. Numerical simulation on  behavior of static drill rooted pile under tension[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2135-2141.
[7] WU You-xia, WANG Zhan, ZHONG Run-hui2, LI Ling-ling, FENG Zhi-hong, WANG Qi. Analysis of interaction between dust break wall piles and soil
subjected to coal loading in soft foundation
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 502-507.
[8] AI Qing-lin, HUANG Wei-feng, ZU Shun-jiang. Numeric analysis of mechanics of steel band parallel robot
based on screw theory
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1650-1656.
[9] SHU E-Na, ZHANG Wei, SHEN Yong-Gang. Control measures for preventing crack on the surface
of mass concrete abutment in early stage
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1621-1628.
[10] XIANG Yi-Jiang, SUN Jun. Dynamic response of bridge approach treated with deep-seated concrete slab[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1863-1869.