|
|
Characteristics of water and sand gushing disasters in subway tunnels and disaster modes analysis |
Shunhua ZHENG1( ),Yingchao WANG1,2,*( ),Fan CHEN1,3,Zheng ZHANG4,Qingli LI2,Zihao FENG2 |
1. State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China 2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China 3. School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, China 4. Hefei Railway Hub Project Construction Headquarters, China Railway Shanghai Bureau Group Limited Company, Hefei 230011, China |
|
|
Abstract Based on the statistics of typical cases of water and sand gushing in subway tunnel construction stages in China from 2002 to 2019, the disaster characteristics were analyzed from the aspects of disaster occurrence characteristics, disaster geological environment and hazard factors. According to the geological environment, causes and forms of disaster sources and engineering conditions, the disaster-causing structure of water and sand gushing in the subway tunnels was classified into 3 categories including 12 types. The first category is large-scale unfavorable geological bodies, including fault and weak fracture zone type, karst and underground rivers type, interlayer fracture zone type, weathering deep groove type, intrusive rocks type, and underwater sandy stratum type. The second category is water-bearing sand and soft soil stratum, including overlying/invading soft soil type, upper-soft and lower-hard composite stratum type, water-rich sandy stratum type, and ground cavity/water bag and silt stratum type. The third category is artificial underground water-rich space, including underground water transmission pipes type, abandoned mining spaces and air-raid shelters filled with water type. Three typical disaster modes of water and sand gushing in subway tunnels with the soil surrounding rock were proposed based on the mechanical characteristics of soil instability and failure, namely, sliding failure mode, breaking failure mode, and seepage failure mode.
|
Received: 04 December 2023
Published: 18 January 2025
|
|
Fund: 国家自然科学基金资助项目(42272313);江苏省自然科学基金资助项目(BK20242087);中国铁路上海局集团有限公司科研项目(2024141);江苏省研究生科研与实践创新计划项目(KYCX22_2583);中国矿业大学未来科学家计划项目(2022WLKXJ119);江苏省大学生创新训练计划项目(202410290207Y). |
Corresponding Authors:
Yingchao WANG
E-mail: zhengshunhua16@163.com;wych12345678@126.com
|
地铁隧道涌水涌砂灾害特征及灾变模式分析
为了探究地铁施工阶段隧道涌水涌砂灾害特征及灾变模式,统计中国2002—2019年的典型地铁隧道涌水涌砂灾害案例,从灾害发生特征、孕灾环境、致灾因素等方面分析灾害特征. 结合灾害源的赋存环境、成因和形态以及工程条件,将地铁隧道涌水涌砂致灾构造划分为3类(12型),即大型不良地质体(断层及软弱破碎区型、岩溶及地下河型、层间裂隙带型、风化深槽型、侵入岩脉型、水下含水砂层型)、含水砂层和软土地层(上覆/侵入软土型、上软下硬复合地层型、富水砂层型、空洞/水囊及淤泥型)、人工地下富水空间(地下输水管线型、充水废弃矿巷及防空洞型). 基于土体失稳破坏力学特性,提出3种典型土质围岩地铁隧道涌水涌砂灾变模式,即滑移失效型、破断失效型、渗透失效型.
关键词:
地铁隧道,
涌水涌砂,
灾害特征,
致灾构造,
灾变模式
|
|
[1] |
钱七虎 利用地下空间助力发展绿色建筑与绿色城市[J]. 隧道建设(中英文), 2019, 39 (11): 1737- 1747 QIAN Qihu Underground space utilization helps develop green buildings and green cities[J]. Tunnel Construction, 2019, 39 (11): 1737- 1747
|
|
|
[2] |
洪开荣, 冯欢欢 近2年我国隧道及地下工程发展与思考(2019—2020年)[J]. 隧道建设, 2021, 41 (8): 1259- 1280 HONG Kairong, FENG Huanhuan Development and thinking of tunnels and underground engineering in China in recent 2 years (from 2019 to 2020)[J]. Tunnel Construction, 2021, 41 (8): 1259- 1280
|
|
|
[3] |
侯秀芳, 冯晨, 左超, 等 2022年中国内地城市轨道交通线路概况[J]. 都市快轨交通, 2023, 36 (1): 9- 13 HOU Xiufang, FENG Chen, ZUO Chao, et al Statistical analysis of urban rail transit in Chinese mainland in 2022[J]. Urban Rapid Rail Transit, 2023, 36 (1): 9- 13
|
|
|
[4] |
韩宝明, 习喆, 孙亚洁, 等 2022年世界城市轨道交通运营统计与分析综述[J]. 都市快轨交通, 2023, 36 (1): 1- 8 HAN Baoming, XI Zhe, SUN Yajie, et al Statistical analysis of urban rail transit operations in the world in 2022: a review[J]. Urban Rapid Rail Transit, 2023, 36 (1): 1- 8
|
|
|
[5] |
刘俊城, 谭勇, 宋享桦, 等 富水砂土基坑渗水对侧墙变形和周边环境的影响[J]. 浙江大学学报: 工学版, 2023, 57 (3): 530- 541 LIU Juncheng, TAN Yong, SONG Xianghua, et al Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (3): 530- 541
|
|
|
[6] |
LAI J X, ZHOU H, WANG K, et al Shield-driven induced ground surface and Ming Dynasty city wall settlement of Xi’an metro[J]. Tunnelling and Underground Space Technology, 2020, 97: 103220
doi: 10.1016/j.tust.2019.103220
|
|
|
[7] |
《中国公路学报》编辑部 中国交通隧道工程学术研究综述·2022[J]. 中国公路学报, 2022, 35 (4): 1- 40 Editorial Department of China Journal of Highway and Transport Review on China’s traffic tunnel engineering research: 2022[J]. China Journal of Highway and Transport, 2022, 35 (4): 1- 40
|
|
|
[8] |
CHEN F, WANG Y, JIANG W, et al Numerical simulation of ground movement induced by water and sand gushing in subway through fault based on DEM-CFD[J]. Computers and Geotechnics, 2021, 139: 104282
doi: 10.1016/j.compgeo.2021.104282
|
|
|
[9] |
ZHANG D M, GAO C P, YIN Z Y CFD-DEM modeling of seepage erosion around shield tunnels[J]. Tunnelling and Underground Space Technology, 2019, 83: 60- 72
doi: 10.1016/j.tust.2018.09.017
|
|
|
[10] |
XIE X C, CECCATO F, ZHOU M L, et al Hydro-mechanical behaviour of soils during water-soil gushing in shield tunnels using MPM[J]. Computers and Geotechnics, 2022, 145: 104688
doi: 10.1016/j.compgeo.2022.104688
|
|
|
[11] |
王勇, 赖芨宇, 陈秋兰, 等 我国地铁施工事故统计分析与研究[J]. 工程管理学报, 2018, 32 (4): 70- 74 WANG Yong, LAI Jiyu, CHEN Qiulan, et al A statistical analysis of metro construction accidents in China[J]. Journal of Engineering Management, 2018, 32 (4): 70- 74
|
|
|
[12] |
石少帅. 深长隧道充填型致灾构造渗透失稳突涌水机理与风险控制及工程应用[D]. 济南: 山东大学, 2014: 1–251. SHI Shaoshuai. Study on seepage failure mechanism and risk control of water inrush induced by filled disaster structure in deep-long tunnel and engineering applications [D]. Jinan: Shandong University, 2014: 1–251.
|
|
|
[13] |
罗雄文, 何发亮 深长隧道突水致灾构造及其突水模式研究[J]. 现代隧道技术, 2014, 51 (1): 21- 25 LUO Xiongwen, HE Faliang A study of geological structures inclined to disaster and models of water burst in deep-buried long tunnels[J]. Modern Tunnelling Technology, 2014, 51 (1): 21- 25
|
|
|
[14] |
贺振宇, 郭佳奇, 陈帆, 等 隧道典型致灾构造及突水模式分析[J]. 中国地质灾害与防治学报, 2017, 28 (2): 97- 107 HE Zhenyu, GUO Jiaqi, CHEN Fan, et al Analysis of typical disaster-causing structure and water inrush model of tunnel[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28 (2): 97- 107
|
|
|
[15] |
李术才, 许振浩, 黄鑫, 等 隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J]. 岩石力学与工程学报, 2018, 37 (5): 1041- 1069 LI Shucai, XU Zhenhao, HUANG Xin, et al Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (5): 1041- 1069
|
|
|
[16] |
李术才, 王康, 李利平, 等 岩溶隧道突水灾害形成机理及发展趋势[J]. 力学学报, 2017, 49 (1): 22- 30 LI Shucai, WANG Kang, LI Liping, et al Mechanical mechanism and development trend of water-inrush disasters in karst tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49 (1): 22- 30
|
|
|
[17] |
LI X, ZHANG P, HE Z, et al Identification of geological structure which induced heavy water and mud inrush in tunnel excavation: a case study on Lingjiao tunnel[J]. Tunnelling and Underground Space Technology, 2017, 69: 203- 208
doi: 10.1016/j.tust.2017.06.014
|
|
|
[18] |
XUE Y, KONG F, QIU D, et al The classifications of water and mud/rock inrush hazard: a review and update[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 1907- 1925
doi: 10.1007/s10064-020-02012-5
|
|
|
[19] |
李新宇, 张顶立, 房倩, 等 越江跨海隧道突水模式研究[J]. 现代隧道技术, 2015, 52 (4): 24- 31 LI Xinyu, ZHANG Dingli, FANG Qian, et al On water burst patterns in underwater tunnels[J]. Modern Tunnelling Technology, 2015, 52 (4): 24- 31
|
|
|
[20] |
陈剑, 魏义山, 江红, 等 地铁暗挖隧道断层破碎带突水涌砂原因分析及处治技术[J]. 隧道建设, 2017, 37 (7): 857- 863 CHEN Jian, WEI Yijiang, JIANG Hong, et al Causes analysis and countermeasures for water inrush and sand gushing in fault and fracture zone during mined metro tunnel excavation[J]. Tunnel Construction, 2017, 37 (7): 857- 863
|
|
|
[21] |
戴轩. 城市地下工程漏水漏砂灾害演化机理的试验与理论研究[D]. 天津: 天津大学, 2016: 1–133. DAI Xuan. Model test and theory study on the urban underground engineering hazards induced by loss of groundwater and sand [D]. Tianjin: Tianjin University, 2016: 1–133.
|
|
|
[22] |
顾雷雨, 杨晶晶, 赵新杰, 等 富水砂层地下工程涌水涌砂主控地质因素研究[J]. 煤炭科学技术, 2023, 51 (Suppl.1): 275- 283 GU Leiyu, YANG Jingjing, ZHAO Xinjie, et al Research on main geological factors controlling water gushing and sand gushing of underground engineering in water-rich sand layer[J]. Coal Science and Technology, 2023, 51 (Suppl.1): 275- 283
|
|
|
[23] |
侯艳娟, 张顶立, 李鹏飞 北京地铁施工安全事故分析及防治对策[J]. 北京交通大学学报, 2009, 33 (3): 52- 59 HOU Yanjuan, ZHANG Dingli, LI Pengfei Analysis and control measures of safety accidents in Beijing subway construction[J]. Journal of Beijing Jiaotong University, 2009, 33 (3): 52- 59
|
|
|
[24] |
张红军. 上覆富水砂层隧道开挖面稳定性分析与注浆加固对策研究[D]. 济南: 山东大学, 2017: 1–148. ZHANG Hongjun. Study on tunnel face stability and grouting reinforcement for tunnels overlying water-rich sand stratum [D]. Jinan: Shandong University, 2017: 1–148.
|
|
|
[25] |
高岩. 城市地下空间工程施工安全影响因素分析[D]. 长春: 吉林建筑大学, 2014: 1–79. GAO Yan. Safety factors analysis of urban underground space construction [D]. Changchun: Jilin Jianzhu University, 2014: 1–79.
|
|
|
[26] |
张成平, 张顶立, 王梦恕 浅埋暗挖隧道施工引起的地表塌陷分析及其控制[J]. 岩石力学与工程学报, 2007, 26 (Suppl.2): 3601- 3608 ZHANG Chengping, ZHANG Dingli, WANG Mengsu Analysis of ground subsidence induced by shallow-buried tunnel construction and its control techniques[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (Suppl.2): 3601- 3608
|
|
|
[27] |
李希元, 闫静雅, 孙艳萍 盾构隧道施工工程事故的原因与对策[J]. 地下空间与工程学报, 2005, 1 (6): 968- 971 LI Xiyuan, YAN Jingya, SUN yanping Reasons and countermeasures of accidents happened during the shield tunnel construction[J]. Chinese Journal of Underground Space and Engineering, 2005, 1 (6): 968- 971
|
|
|
[28] |
竺维彬, 鞠世建. 地铁盾构施工风险源及典型事故的研究[M]. 广州: 暨南大学出版社, 2009.
|
|
|
[29] |
王䶮. 城市地铁隧道事故案例统计分析与风险评价方法研究[D]. 北京: 北京交通大学, 2018: 1–149. WANG Yan. Study on accidents statistical analysis and risk assessment methods of urban subway tunnel [D]. Beijing: Beijing Jiaotong University, 2018: 1–149.
|
|
|
[30] |
王建秀, 冯波, 张兴胜, 等 岩溶隧道围岩水力破坏机制研究[J]. 岩石力学与工程学报, 2010, 29 (7): 1363- 1370 WANG Jianxiu, FENG Bo, ZHANG Xingsheng, et al Hydraulic failure mechanism of karst tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (7): 1363- 1370
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|