Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (1): 152-166    DOI: 10.3785/j.issn.1008-973X.2025.01.015
    
Characteristics of water and sand gushing disasters in subway tunnels and disaster modes analysis
Shunhua ZHENG1(),Yingchao WANG1,2,*(),Fan CHEN1,3,Zheng ZHANG4,Qingli LI2,Zihao FENG2
1. State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
3. School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, China
4. Hefei Railway Hub Project Construction Headquarters, China Railway Shanghai Bureau Group Limited Company, Hefei 230011, China
Download: HTML     PDF(1949KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the statistics of typical cases of water and sand gushing in subway tunnel construction stages in China from 2002 to 2019, the disaster characteristics were analyzed from the aspects of disaster occurrence characteristics, disaster geological environment and hazard factors. According to the geological environment, causes and forms of disaster sources and engineering conditions, the disaster-causing structure of water and sand gushing in the subway tunnels was classified into 3 categories including 12 types. The first category is large-scale unfavorable geological bodies, including fault and weak fracture zone type, karst and underground rivers type, interlayer fracture zone type, weathering deep groove type, intrusive rocks type, and underwater sandy stratum type. The second category is water-bearing sand and soft soil stratum, including overlying/invading soft soil type, upper-soft and lower-hard composite stratum type, water-rich sandy stratum type, and ground cavity/water bag and silt stratum type. The third category is artificial underground water-rich space, including underground water transmission pipes type, abandoned mining spaces and air-raid shelters filled with water type. Three typical disaster modes of water and sand gushing in subway tunnels with the soil surrounding rock were proposed based on the mechanical characteristics of soil instability and failure, namely, sliding failure mode, breaking failure mode, and seepage failure mode.



Key wordssubway tunnels      water and sand gushing      disaster characteristics      disaster-causing structure      disaster mode     
Received: 04 December 2023      Published: 18 January 2025
CLC:  P 642.22  
  U 441.3  
Fund:  国家自然科学基金资助项目(42272313);江苏省自然科学基金资助项目(BK20242087);中国铁路上海局集团有限公司科研项目(2024141);江苏省研究生科研与实践创新计划项目(KYCX22_2583);中国矿业大学未来科学家计划项目(2022WLKXJ119);江苏省大学生创新训练计划项目(202410290207Y).
Corresponding Authors: Yingchao WANG     E-mail: zhengshunhua16@163.com;wych12345678@126.com
Cite this article:

Shunhua ZHENG,Yingchao WANG,Fan CHEN,Zheng ZHANG,Qingli LI,Zihao FENG. Characteristics of water and sand gushing disasters in subway tunnels and disaster modes analysis. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 152-166.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.01.015     OR     https://www.zjujournals.com/eng/Y2025/V59/I1/152


地铁隧道涌水涌砂灾害特征及灾变模式分析

为了探究地铁施工阶段隧道涌水涌砂灾害特征及灾变模式,统计中国2002—2019年的典型地铁隧道涌水涌砂灾害案例,从灾害发生特征、孕灾环境、致灾因素等方面分析灾害特征. 结合灾害源的赋存环境、成因和形态以及工程条件,将地铁隧道涌水涌砂致灾构造划分为3类(12型),即大型不良地质体(断层及软弱破碎区型、岩溶及地下河型、层间裂隙带型、风化深槽型、侵入岩脉型、水下含水砂层型)、含水砂层和软土地层(上覆/侵入软土型、上软下硬复合地层型、富水砂层型、空洞/水囊及淤泥型)、人工地下富水空间(地下输水管线型、充水废弃矿巷及防空洞型). 基于土体失稳破坏力学特性,提出3种典型土质围岩地铁隧道涌水涌砂灾变模式,即滑移失效型、破断失效型、渗透失效型.


关键词: 地铁隧道,  涌水涌砂,  灾害特征,  致灾构造,  灾变模式 
编号隧道及施工方法日期地层发生位置介质及状态灾害影响发生机制
数据来源:应急管理部、城市地铁官方网站、公开发表的文献资料以及新闻媒体报道等.
注:1. “/”表示影响较小,或无详细记录;“*”表示相关数据缺失. 2. 案例统计中的地铁隧道包括施工竖井、区间隧道和联络通道. 3. A、B、C、D、E、F、G分别代表隧道断面的方位11点半到12点半、12点半到3点、3点到5点半、5点半到6点半、6点半到9点、9点到11点半和掌子面上.
1广州地铁11号线沙河站竖井横通道(矿山法)2019–12–01强风化砂砾岩,开挖面以上10 m存在富水中粗砂、粉细砂层掌子面(A)突泥涌砂上方路面坍塌(2次),车辆坠坑,3人死亡爆破开挖后未及时封闭,渗水、涌水引起土层流失
2杭州地铁5号线宝建区间联络通道(矿山法)2019–08–28地下37米为杂填土和密实
砂层
掌子面(A)渗漏水路面塌陷,地面建筑裂缝、倾斜,燃气泄漏渗漏水引起隧道上方土层流失
3呼和浩特地铁2号线水诺区间联络通道(矿山法)2019–08–01富水砂砾地层掌子面(D)突发性涌水涌砂地面沉降,路面塌陷降雨量增加导致区域内水头抬升
4北京地铁19号线金平区间隧道(矿山法)2019–03–17粉质黏土层掌子面(F)局部渗漏水,涌水涌泥路面下方空洞,地表塌陷管线渗漏及地表水下渗冲刷作用下,在隧道上方土层形成水囊
5佛山轨交2号线花仙区间联络通道(矿山法)2018–07–28富水软弱砂层掌子面漏水地表塌陷*
6佛山轨交2号线湖涌站~绿岛湖站区间隧道(盾构法)2018–02–07淤泥质粉土、粉砂、中砂,交界处且具有承压水盾尾(C)、管片环缝渗水漏水漏砂,透水涌泥涌砂管片变形破损,道路坍塌,12人死亡,8人受伤土仓压力上升,盾尾下沉,盾尾间隙变大
7广州地铁14号线街口站~中间风井区间联络通道(矿山法)2017–10上软下硬地层,风化花岗岩,上覆黏土和富水砾砂、含卵石粗砾砂、中粗砂及卵石层掌子面(B)涌水涌砂地表塌陷开挖揭露富水砂层
8港珠澳大桥工程的香港段屯门赤蜡角接线工程海底隧道联络通道(顶管法)2017–09–24较软的海洋冲积土层,全风化带花岗岩,水压达0.5 Mpa区间管壁泥水喷涌管片受损,隧道积水积淤管壁破裂,大量的泥水涌入隧道内
9武汉地铁6号线琴台站~武胜路站区间隧道(盾构法)2016–07–17粉质黏土,承压性粉细砂,地下水受汉江补给,下卧强、中风化基岩盾尾(C)局部涌水
涌砂
地面沉降,管片
受损
持续降雨导致地下水水位升高,盾尾密封失效
10长春地铁1号线长春站南广场~北京大街区间联络通道(矿山法)2016–06–29施工区域上方存在水囊掌子面涌水涌砂地表塌陷开挖扰动导通上方水囊
11南昌地铁2号线翠苑路~学府大道区间隧道(盾构法)2016–06–18道路回填的极细砂掌子面涌水涌砂地表塌陷降雨量增大导致地下水水位上升
12深圳地铁7号线福皇区间隧道(盾构法)2015–06–25上软下硬地层,上部富水砂砾层和砂层,下部为微风化花岗岩掌子面(G:盾构
仓门)
涌水涌泥地表塌陷,1人死亡,4人受伤盾构换刀,地层局部沉降导致上部水管断裂
13杭州地铁4号线江锦路站~市民中心站接收竖井(盾构法)2014–07–31富水粉土粉砂层,上覆淤泥质填土或河道淤泥,河道距隧道较近进出洞/接收(F)渗漏水,河水灌入隧道河道、围堰塌陷,隧道被淹降雨量大使河水水位上升,围护结构
失效
14武汉地铁4号线越江隧道复兴路站左线盾构接收竖井(盾构法)2014–07–06承压富水粉土和粉细砂层,覆土松散、自稳能力差区间管片
纵缝
渗水/管片错位张开
152014–07–01进出洞/接收(D)涌水涌砂地面建筑沉降开裂洞门加固结构失效
162014–06–07进出洞/接收(C)涌水/盾构掘进扰动,洞门防水结构失效
17武汉地铁4号线越江隧道复兴路站右线接收竖井(盾构法)2014–07–03进出洞/接收(D)涌漏水并携带大量泥砂降水排险导致地面沉降,建筑物沉降开裂盾构掘进扰动,洞门防水结构失效
18大连地铁学海区间隧道(矿山法)2013–11–29中、强风化板岩,上覆富水卵石和填土层,地下水连通海水补给掌子面(F)涌水地表塌陷开挖后基岩变薄,爆破扰动上部承压性软弱地层,产生裂隙
19南京地铁3号线大行宫施工竖井(矿山法)2012–11–29古河道,承压富水砂层掌子面涌水涌砂地表塌陷开挖揭露富水砂层,未及时封闭
20青岛地铁君峰路~振华路区间隧道(矿山法)2011–07–17穿越中微风化花岗岩,上覆承压性粉质黏土、粗砾砂,围岩破碎,存在强水流砂层掌子面(A)涌水掌子面拱顶坍塌,地面沉降、塌陷降雨及管线渗流使地层砂石流失,形成水囊,施工扰动造
成饱和流塑状土体失稳
21天津地铁2号线建国道~天津站区间隧道(盾构法)2011–05–06粉土、粉砂、粉质黏土层,
下部粉砂层厚度10 m左右
掌子面(G:螺旋机观察孔)突砂涌水地表塌陷,隧道损毁,盾构被埋盾构螺旋机被水土固结块卡死,观察孔开启
22大连地铁交通大学段竖井横通道(矿山法)2011–03–10素填土,富水冲洪积卵石富集区,下伏承压性风化基岩掌子面(A)涌水涌泥地表塌陷,3人死亡开挖揭露富水卵石地层
23西安地铁2号线永南区间隧道(矿山法)2009–06–19黄土梁洼区掌子面(E)涌水地表塌陷,隧道
开裂
暴雨及水管爆裂导致水压上升,诱发隧道上方土体软化或形成空洞
24广州地铁6号线黄沙站~海珠广场站接收竖井(盾构法)2009–02–22强风化、中风化砂质泥岩,上覆饱和富水中粗砂层和
流塑状淤泥层
进出洞/
接收
涌水涌砂地表塌陷洞门止水结构未
安装
25广州地铁珠江新城旅客输送系统右线始发竖井(盾构法)2008–07–22上软下硬地层,富水海陆交互相淤泥质砂层,下部为全风化砂质泥岩,具有承压性进出洞/
始发(D)
涌水涌砂/洞门围护结构失效,产生渗流通道
26上海轨交10号线溧阳路~曲阳路始发竖井(盾构法)2008–06–26穿越富水粉土、淤泥质黏土,深部粉性土、砂土层中具有承压水进出洞/
始发
渗水漏砂地面沉降洞门防水结构失效
27广州地铁5号线大西盾构区间联络通道(矿山法)2008–01–17下穿珠江水道,淤泥质土层及富水粉细砂和中粗砂层掌子面突发性涌水隧道塌方,地表
塌陷
施工扰动富水软弱土体
28南京地铁2号线汉中门站~上海路区间隧道(矿山法)2007–12–16富水粉质黏土和粉砂质泥岩,隧道上方有充满水和淤泥的空洞以及一定厚度淤
泥层
掌子面(A)涌水涌泥工作面断裂,路面塌陷爆破扰动导通隧道掌子面与地层充填空洞
29南京地铁2号线中和村站~元通站接收竖井(盾构法)2007–11–20穿越承压性中密粉土和粉
细砂,上覆局部为流塑状淤泥质粉质黏土
进出洞/接收(D)、管片接缝渗水,漏水漏砂,涌水涌砂地表塌陷,盾构
被埋
洞门防水结构失效,盾尾下沉,管片张开
30南京地铁2号线油坊桥站~中和村站始发竖井(盾构法)2007–09–07穿越流塑状淤泥质粉质黏土,下部承压性中密粉土
和粉细砂
进出洞/始发(C)、管片环缝(D)涌水涌砂地表塌陷,隧道沉降,管片开裂围护结构失效(高水压),管片张开
31南京地铁2号线汉中门站~上海路区间隧道(矿山法)2007–02–05富水粉质黏土和粉砂质泥岩掌子面渗水掌子面坍塌,管道断裂爆炸,路面损毁管线漏水浸泡土层软化,承压水击穿土层
32广州地铁5号线大文区间隧道(盾构法)2006–01–04复杂断裂带,上覆回填砂层,地下水丰富掌子面水土流失地表塌陷施工扰动引起地下水携砂土流失
33北京地铁10号线呼家楼站~光华路站区间隧道(浅埋暗挖法)2006–01–03穿越承压圆砾和粉土层,上覆粉细砂层,存在水囊及饱和淤泥层掌子面涌水工作面坍塌,地表塌陷地层中管线长期渗漏形成水囊,开挖扰动使土体变形,导致管线断裂
34深圳地铁1号线世界之窗~白石洲区间隧道(矿山法)2005–07–13填海造陆区,主要分布人工填土和具有流动性砂土掌子面渗水掌子面坍塌,路基断裂,地表塌陷开挖扰动及渗水使隧道周围土体软化
35南京地铁玄武门~南京站区间隧道(盾构法)2005富水淤泥质黏土和粉细砂盾尾涌水涌砂地面沉降,建筑物开裂盾尾密封失效
36广州地铁3号线大塘站~沥滘站区间隧道(盾构法)2004–03–01穿越全风化、强风化泥质砂岩,上覆富水淤泥质黏土层及粉细砂层区间管片(B)涌水涌砂,
涌水
/注浆压力过大使管片破坏、错台、张开
372003–08–16掌子面(G:螺旋输送机)水砂喷涌地表塌陷基岩开挖长期扰动,导致上部土体塌陷
38广州地铁3号线天河客运站~华师站区间隧道(盾
构法)
2003–12–17上软下硬地层,下部为风化花岗岩,上部为砂质黏土层,界面存在丰富地下水掌子面(G:螺旋输送机)水砂喷涌地表塌陷开挖对上部土体扰动较大,导致土层
塌方
39上海轨道交通4号线浦东南路~南浦大桥站越江隧道联络通道(矿山法)2003–07–01穿越承压性高含砂量砂土,水源补给丰富且具有潮汐
变化
掌子面渗水,流砂
突涌
隧道损毁,地面沉降,水土流失,建筑物倾斜,防汛墙塌陷开挖顺序错误,冻结围护结构失效
40广州地铁2/8号线延长线区间隧道(盾构法)2003上软下硬地层,弱透水性含砾砂黏土层,下部承压性风化砂岩盾尾漏水漏砂地面沉降盾尾密封不严
41深圳地铁Ⅰ期工程3A标国贸~老街区间隧道(矿山法)2002–07–07上软下硬地层,穿越粉质黏土层、全风化、中风化花岗岩,(以上1.5 m)上覆较厚
富水砂层 ,相对隔水层薄
掌子面(B)渗水,涌水
涌砂
掌子面拱顶坍塌,地面沉降开挖扰动导通上覆砂层,水压力及渗
流力作用下使围岩软化
422002–05–19掌子面(B)渗水,涌水涌砂涌泥地表塌陷
43上海轨道交通9号线外环路站~合川路站接收竖井(盾构法)*淤泥质黏土层,承压粉砂层进出洞/
接收
渗水流砂管片变形、沉降、破坏围护结构密封失效,灾害体与隧道结构存在连通渗流通道,管片张开
44广州地铁3号线大石站~汉溪长隆站区间隧道(盾构法)*穿越淤泥质和粉质黏土,上覆夹富水砂层盾尾漏水漏砂*盾尾密封失效
45青岛黄岛区某地铁区间隧道(矿山法)*断层破碎带,节理发育,上覆富水含黏性土粗砾砂,径流方向复杂掌子面突水涌砂掌子面坍塌开挖揭露断层,爆破扰动
46南京某地铁项目接收竖井(盾构法)*承压砂层,地下水与长江有水力联系进出洞/
接收
喷涌清水隧道、盾构被淹洞门封闭未完成时撤除冷冻加固,出现罕见暴雨
47广州地铁某接收竖井(盾构法)*富水砂质地层进出洞/
接收
涌水涌砂隧道破坏,地面
沉降
超挖,洞门围护结构密封失效
Tab.1 Typical cases of water and sand gushing disaster in subway tunnels[11, 20-29]
Fig.1 Statistics on tunneling methods for water and sand gushing disasters in subway tunnels
Fig.2 Statistics on disaster location for water and sand gushing disasters in subway tunnels
Fig.3 Disaster section direction of water and sand gushing disasters in subway tunnels
介质NP/%致灾形式
1934.5渗漏水、(喷)涌水
水/砂2749.1(渗)漏水漏砂、涌水涌砂
水/泥59.1涌水涌泥
水/砂/泥47.3涌(透)水涌砂涌泥
Tab.2 Media types of water and sand gushing disasters in subway tunnels
Fig.4 Disaster causing forms of different media types
Fig.5 Statistics on disaster impact for water and sand gushing disasters in subway tunnels
Fig.6 Statistics on disaster geological characteristics for water and sand gushing disasters in subway tunnels
Fig.7 Statistics on soft soil categories for water and sand gushing disasters in subway tunnels
Fig.8 Soil composition of main disaster geology
Fig.9 Statistics on hazard factors for water and sand gushing disasters in subway tunnels
Fig.10 Cause-specific statistics on main hazard factors
Fig.11 Disaster geological environment and hazard factors of water and sand gushing in subway tunnels
类别类型致灾原因
大型不良地质体断层及软弱破碎区、岩溶及地下河、层间裂隙带、风化深槽、侵入岩脉、水下含水砂层直接揭露、防突结构破坏
含水砂层和软土地层上覆/侵入软土、上软下硬复合地层、富水砂层、空洞/水囊及淤泥施工揭露或扰动、结构密封失效、降雨诱导
人工地下富水空间地下输水管线渗漏集聚、管线破裂
充水废弃矿巷及防空洞直接揭露、防突结构破坏
Tab.3 Classification of disaster-causing structure for water and sand gushing in subway tunnels
Fig.12 Schematic diagram of disaster-causing structures for water and sand gushing in subway tunnels
Fig.13 Schematic diagram of disaster modes for water and sand gushing in subway tunnels
[1]   钱七虎 利用地下空间助力发展绿色建筑与绿色城市[J]. 隧道建设(中英文), 2019, 39 (11): 1737- 1747
QIAN Qihu Underground space utilization helps develop green buildings and green cities[J]. Tunnel Construction, 2019, 39 (11): 1737- 1747
[2]   洪开荣, 冯欢欢 近2年我国隧道及地下工程发展与思考(2019—2020年)[J]. 隧道建设, 2021, 41 (8): 1259- 1280
HONG Kairong, FENG Huanhuan Development and thinking of tunnels and underground engineering in China in recent 2 years (from 2019 to 2020)[J]. Tunnel Construction, 2021, 41 (8): 1259- 1280
[3]   侯秀芳, 冯晨, 左超, 等 2022年中国内地城市轨道交通线路概况[J]. 都市快轨交通, 2023, 36 (1): 9- 13
HOU Xiufang, FENG Chen, ZUO Chao, et al Statistical analysis of urban rail transit in Chinese mainland in 2022[J]. Urban Rapid Rail Transit, 2023, 36 (1): 9- 13
[4]   韩宝明, 习喆, 孙亚洁, 等 2022年世界城市轨道交通运营统计与分析综述[J]. 都市快轨交通, 2023, 36 (1): 1- 8
HAN Baoming, XI Zhe, SUN Yajie, et al Statistical analysis of urban rail transit operations in the world in 2022: a review[J]. Urban Rapid Rail Transit, 2023, 36 (1): 1- 8
[5]   刘俊城, 谭勇, 宋享桦, 等 富水砂土基坑渗水对侧墙变形和周边环境的影响[J]. 浙江大学学报: 工学版, 2023, 57 (3): 530- 541
LIU Juncheng, TAN Yong, SONG Xianghua, et al Effects of through-wall leaking during excavation in water-rich sand on lateral wall deflections and surrounding environment[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (3): 530- 541
[6]   LAI J X, ZHOU H, WANG K, et al Shield-driven induced ground surface and Ming Dynasty city wall settlement of Xi’an metro[J]. Tunnelling and Underground Space Technology, 2020, 97: 103220
doi: 10.1016/j.tust.2019.103220
[7]   《中国公路学报》编辑部 中国交通隧道工程学术研究综述·2022[J]. 中国公路学报, 2022, 35 (4): 1- 40
Editorial Department of China Journal of Highway and Transport Review on China’s traffic tunnel engineering research: 2022[J]. China Journal of Highway and Transport, 2022, 35 (4): 1- 40
[8]   CHEN F, WANG Y, JIANG W, et al Numerical simulation of ground movement induced by water and sand gushing in subway through fault based on DEM-CFD[J]. Computers and Geotechnics, 2021, 139: 104282
doi: 10.1016/j.compgeo.2021.104282
[9]   ZHANG D M, GAO C P, YIN Z Y CFD-DEM modeling of seepage erosion around shield tunnels[J]. Tunnelling and Underground Space Technology, 2019, 83: 60- 72
doi: 10.1016/j.tust.2018.09.017
[10]   XIE X C, CECCATO F, ZHOU M L, et al Hydro-mechanical behaviour of soils during water-soil gushing in shield tunnels using MPM[J]. Computers and Geotechnics, 2022, 145: 104688
doi: 10.1016/j.compgeo.2022.104688
[11]   王勇, 赖芨宇, 陈秋兰, 等 我国地铁施工事故统计分析与研究[J]. 工程管理学报, 2018, 32 (4): 70- 74
WANG Yong, LAI Jiyu, CHEN Qiulan, et al A statistical analysis of metro construction accidents in China[J]. Journal of Engineering Management, 2018, 32 (4): 70- 74
[12]   石少帅. 深长隧道充填型致灾构造渗透失稳突涌水机理与风险控制及工程应用[D]. 济南: 山东大学, 2014: 1–251.
SHI Shaoshuai. Study on seepage failure mechanism and risk control of water inrush induced by filled disaster structure in deep-long tunnel and engineering applications [D]. Jinan: Shandong University, 2014: 1–251.
[13]   罗雄文, 何发亮 深长隧道突水致灾构造及其突水模式研究[J]. 现代隧道技术, 2014, 51 (1): 21- 25
LUO Xiongwen, HE Faliang A study of geological structures inclined to disaster and models of water burst in deep-buried long tunnels[J]. Modern Tunnelling Technology, 2014, 51 (1): 21- 25
[14]   贺振宇, 郭佳奇, 陈帆, 等 隧道典型致灾构造及突水模式分析[J]. 中国地质灾害与防治学报, 2017, 28 (2): 97- 107
HE Zhenyu, GUO Jiaqi, CHEN Fan, et al Analysis of typical disaster-causing structure and water inrush model of tunnel[J]. The Chinese Journal of Geological Hazard and Control, 2017, 28 (2): 97- 107
[15]   李术才, 许振浩, 黄鑫, 等 隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J]. 岩石力学与工程学报, 2018, 37 (5): 1041- 1069
LI Shucai, XU Zhenhao, HUANG Xin, et al Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (5): 1041- 1069
[16]   李术才, 王康, 李利平, 等 岩溶隧道突水灾害形成机理及发展趋势[J]. 力学学报, 2017, 49 (1): 22- 30
LI Shucai, WANG Kang, LI Liping, et al Mechanical mechanism and development trend of water-inrush disasters in karst tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49 (1): 22- 30
[17]   LI X, ZHANG P, HE Z, et al Identification of geological structure which induced heavy water and mud inrush in tunnel excavation: a case study on Lingjiao tunnel[J]. Tunnelling and Underground Space Technology, 2017, 69: 203- 208
doi: 10.1016/j.tust.2017.06.014
[18]   XUE Y, KONG F, QIU D, et al The classifications of water and mud/rock inrush hazard: a review and update[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 1907- 1925
doi: 10.1007/s10064-020-02012-5
[19]   李新宇, 张顶立, 房倩, 等 越江跨海隧道突水模式研究[J]. 现代隧道技术, 2015, 52 (4): 24- 31
LI Xinyu, ZHANG Dingli, FANG Qian, et al On water burst patterns in underwater tunnels[J]. Modern Tunnelling Technology, 2015, 52 (4): 24- 31
[20]   陈剑, 魏义山, 江红, 等 地铁暗挖隧道断层破碎带突水涌砂原因分析及处治技术[J]. 隧道建设, 2017, 37 (7): 857- 863
CHEN Jian, WEI Yijiang, JIANG Hong, et al Causes analysis and countermeasures for water inrush and sand gushing in fault and fracture zone during mined metro tunnel excavation[J]. Tunnel Construction, 2017, 37 (7): 857- 863
[21]   戴轩. 城市地下工程漏水漏砂灾害演化机理的试验与理论研究[D]. 天津: 天津大学, 2016: 1–133.
DAI Xuan. Model test and theory study on the urban underground engineering hazards induced by loss of groundwater and sand [D]. Tianjin: Tianjin University, 2016: 1–133.
[22]   顾雷雨, 杨晶晶, 赵新杰, 等 富水砂层地下工程涌水涌砂主控地质因素研究[J]. 煤炭科学技术, 2023, 51 (Suppl.1): 275- 283
GU Leiyu, YANG Jingjing, ZHAO Xinjie, et al Research on main geological factors controlling water gushing and sand gushing of underground engineering in water-rich sand layer[J]. Coal Science and Technology, 2023, 51 (Suppl.1): 275- 283
[23]   侯艳娟, 张顶立, 李鹏飞 北京地铁施工安全事故分析及防治对策[J]. 北京交通大学学报, 2009, 33 (3): 52- 59
HOU Yanjuan, ZHANG Dingli, LI Pengfei Analysis and control measures of safety accidents in Beijing subway construction[J]. Journal of Beijing Jiaotong University, 2009, 33 (3): 52- 59
[24]   张红军. 上覆富水砂层隧道开挖面稳定性分析与注浆加固对策研究[D]. 济南: 山东大学, 2017: 1–148.
ZHANG Hongjun. Study on tunnel face stability and grouting reinforcement for tunnels overlying water-rich sand stratum [D]. Jinan: Shandong University, 2017: 1–148.
[25]   高岩. 城市地下空间工程施工安全影响因素分析[D]. 长春: 吉林建筑大学, 2014: 1–79.
GAO Yan. Safety factors analysis of urban underground space construction [D]. Changchun: Jilin Jianzhu University, 2014: 1–79.
[26]   张成平, 张顶立, 王梦恕 浅埋暗挖隧道施工引起的地表塌陷分析及其控制[J]. 岩石力学与工程学报, 2007, 26 (Suppl.2): 3601- 3608
ZHANG Chengping, ZHANG Dingli, WANG Mengsu Analysis of ground subsidence induced by shallow-buried tunnel construction and its control techniques[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (Suppl.2): 3601- 3608
[27]   李希元, 闫静雅, 孙艳萍 盾构隧道施工工程事故的原因与对策[J]. 地下空间与工程学报, 2005, 1 (6): 968- 971
LI Xiyuan, YAN Jingya, SUN yanping Reasons and countermeasures of accidents happened during the shield tunnel construction[J]. Chinese Journal of Underground Space and Engineering, 2005, 1 (6): 968- 971
[28]   竺维彬, 鞠世建. 地铁盾构施工风险源及典型事故的研究[M]. 广州: 暨南大学出版社, 2009.
[29]   王䶮. 城市地铁隧道事故案例统计分析与风险评价方法研究[D]. 北京: 北京交通大学, 2018: 1–149.
WANG Yan. Study on accidents statistical analysis and risk assessment methods of urban subway tunnel [D]. Beijing: Beijing Jiaotong University, 2018: 1–149.
[30]   王建秀, 冯波, 张兴胜, 等 岩溶隧道围岩水力破坏机制研究[J]. 岩石力学与工程学报, 2010, 29 (7): 1363- 1370
WANG Jianxiu, FENG Bo, ZHANG Xingsheng, et al Hydraulic failure mechanism of karst tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (7): 1363- 1370
No related articles found!