Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (2): 260-268    DOI: 10.3785/j.issn.1008-973X.2026.02.004
能源工程、机械工程     
基于三维扫描技术的管节点疲劳热点应力集中系数分析
马永亮1(),张应铭1,陆国庆2,杨跃富3,韩超帅4
1. 重庆交通大学 航运与船舶工程学院,重庆 400074
2. 镇江市交通运输局 港航事业发展中心,江苏 镇江 212003
3. 海军工程大学 舰船与海洋学院,湖北 武汉 430033
4. 江苏科技大学 海洋学院,江苏 镇江 212003
Analysis of stress concentration factor of fatigue hot spot for tubular joints based on 3D scanning technology
Yongliang MA1(),Yingming ZHANG1,Guoqing LU2,Yuefu YANG3,Chaoshuai HAN4
1. School of Shipping and Naval Architecture, Chongqing Jiaotong University, Chongqing 400074, China
2. Port and Waterway Development Center, Bureau of Transportation of Zhenjiang, Zhenjiang 212003, China
3. College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China
4. Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212003, China
 全文: PDF(2795 KB)   HTML
摘要:

为了准确评估焊接管节点的疲劳热点应力集中系数(SCF),验证现有方法的准确性,提出新的建模方法. 以T形管节点为研究对象,通过三维激光扫描技术获取焊缝形状数据,利用逆向建模方法建立焊缝模型并导入有限元软件,形成含有焊缝的管节点模型. 进行轴向拉伸加载下的T形管节点测试,按照表面应力插值法得到SCF. 使用所提模型、美国焊接学会(AWS)规范焊缝模型和无焊缝模型计算试验管节点的SCF,将计算结果与测试数据进行对比分析. 结果表明,所提模型的计算结果与测试数据最接近,AWS规范焊缝模型其次,无焊缝模型的计算结果保守,且不能准确给出SCF沿焊趾的分布. 在缺乏焊缝数据时,AWS规范焊缝模型的计算结果符合测试数据的分布规律,且误差不超过25%. 所提方法可方便地推广到其他类型管节点模拟中.

关键词: 三维扫描技术逆向建模T形管节点应力集中系数 (SCF)试验测试    
Abstract:

In order to precisely evaluate the stress concentration factor (SCF) of the welded tubular joints and verify the accuracy of existing methods, a T-joint was taken as the research object to propose a new modeling method. The weld shape data was obtained via 3D laser scanning technology, and a weld model was established through a reverse modeling approach. By importing the reverse-built weld model into the finite element software, a T-joint model containing the reverse weld model was composed. Axial tensile loading test on the T-joints was conducted, and the SCFs were obtained according to the surface stress interpolation method. The SCFs of the T-joint were calculated by using the proposed model, the American Welding Society (AWS) specification weld model, and the model without welds, followed by a comparative analysis between the calculation results with the test data. Results show that the calculation results of the proposed model are the closest to the test data, followed by the AWS specification weld model. However, the model without welds gives a conservative prediction and cannot accurately predict the distribution of SCFs along the weld toe. In the absence of weld shape data, the AWS specification weld model agrees with the test-data distribution to within 25% error. The proposed method can be conveniently extended to the simulation of other types of tubular joints.

Key words: 3D scanning technology    reverse modeling    T-joint    stress concentration factor (SCF)    testing
收稿日期: 2025-01-31 出版日期: 2026-02-03
CLC:  P 751  
基金资助: 国家自然科学基金资助项目(52001144).
作者简介: 马永亮(1983—),男,副教授,博士,从事船舶与海洋结构物力学性能研究. orcid.org/0000-0001-9940-7641. E-mail:mayongliang@hrbeu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
马永亮
张应铭
陆国庆
杨跃富
韩超帅

引用本文:

马永亮,张应铭,陆国庆,杨跃富,韩超帅. 基于三维扫描技术的管节点疲劳热点应力集中系数分析[J]. 浙江大学学报(工学版), 2026, 60(2): 260-268.

Yongliang MA,Yingming ZHANG,Guoqing LU,Yuefu YANG,Chaoshuai HAN. Analysis of stress concentration factor of fatigue hot spot for tubular joints based on 3D scanning technology. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 260-268.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.004        https://www.zjujournals.com/eng/CN/Y2026/V60/I2/260

图 1  管节点焊缝3D激光扫描
参数数值参数数值
弦管半径RC351支管厚度TB8
支管半径RB245弦管长度LC2 700
弦管厚度TC14支管长度LB1 350
表 1  T形管节点试件尺寸
图 2  扫描获得的T形管节点焊缝区域点云数据(试件1)
图 3  焊缝截面样条曲线
图 4  基于逆向建模的焊缝实体模型
图 5  逆向重建焊缝模型精度评估
图 6  弦管与支管插值点示意图
图 7  管节点疲劳热点应力集中系数的测点布置
图 8  T形管节点试验加载装置
图 9  T形管节点试件安装
图 10  含逆向建模焊缝的T形管节点模型
图 11  测点布置角对应的焊缝截面
图 12  符合美国焊接学会规范焊缝的T形管节点模型
图 13  无焊缝T形管节点模型
图 14  弦管两端施加的位移约束
图 15  不同单元尺寸的有限元模型
网格方向h
稀疏网格正常网格加密网格
支管径向0.5TB0.50TB0.25TB
弦管径向0.5TC0.33TC0.25TC
支管环向1.0TB0.50TB0.25TB
表 2  有限元模型近焊趾处的网格尺寸
图 16  T形管节点不同网格尺寸的应力集中系数分布
图 17  支管焊趾部位不同焊缝模型的应力集中系数分布
图 18  弦管焊趾部位不同焊缝模型的应力集中系数分布
图 19  不同焊缝模型的应力集中系数计算百分比误差(支管)
图 20  不同焊缝模型的应力集中系数计算百分比误差(弦管)
试件及部位RMSEMAPE
逆向焊缝模型AWS规范焊缝模型无焊缝模型逆向焊缝模型AWS规范焊缝模型无焊缝模型
试件1支管0.672 30.798 83.479 113.393 515.768 574.758 4
试件2支管0.538 80.699 13.241 78.122 914.941 854.578 2
试件1弦管0.290 40.592 31.253 85.012 711.182 922.023 4
试件2弦管0.310 70.447 71.104 65.162 57.079 516.876 4
表 3  不同焊缝模型的应力集中系数计算误差指标对比
1 ZAVVAR E, ROSA-SANTOS P, GHAFOORI E, et al Analysis of tubular joints in marine structures: a comprehensive review[J]. Marine Structures, 2025, 99: 103702
doi: 10.1016/j.marstruc.2024.103702
2 中国船级社. 海洋工程结构物疲劳强度评估技术指南 2022 [EB/OL]. (2022−05−11) [2024−05−18]. https://www.ccs.org.cn/ccswz/specialDetail?id=202205110218529632.
3 American Bureau of Shipping. Guide for fatigue assessment of offshore structures [S]. Houston: American Bureau of Shipping, 2020.
4 Det Norske Veritas. Fatigue design of offshore steel structures: DNV-RP-C203 [S]. Oslo: Det Norske Veritas, 2024.
5 American Petroleum Institute. Recommended practice for planning, designing and constructing fixed offshore platforms: working stress design: RP2A-WSD [S]. Washington DC: American Petroleum Institute, 2010.
6 International Standardization Organization. Petroleum and natural gas industries - fixed steel offshore structures: ISO 19902-2022 (E) [S]. Genova: International Standardization Organization, 2022.
7 International Standardization Organization. Fatigue — design procedure for welded hollow-section joints — recommendations: ISO 14347-2008 [S]. Genova: International Standardization Organization, 2008.
8 ZHAO X, HERION S, PACKER J, et al. Design guide for circular and rectangular hollow section welded joints under fatigue loading: CIDECT design guide No. 8 [M]. Cologne: TÜV-Verlag, 2001.
9 Lloyd’s Register of Shipping. Stress concentration factors for simple tubular joints: assessment of existing and development of new parametric formulae: OTH 354 [R]. Nottingham: Health and Safety Executive , 1997.
10 甘进, 乐京霞, 吴卫国, 等 海洋平台KK型管节点的疲劳性能试验研究[J]. 武汉理工大学学报: 交通科学与工程版, 2011, 35 (5): 980- 983
GAN Jin, LE Jingxia, WU Weiguo, et al Experimental study on fatigue properties of tubular KK-joints of offshore platform[J]. Journal of Wuhan University of Technology: Transportation Science and Engineering, 2011, 35 (5): 980- 983
doi: 10.3963/j.issn.1006-2823.2011.05.026
11 张哲文. 不锈钢T型相贯节点疲劳性能研究 [D]. 合肥: 合肥工业大学, 2021: 1–89.
ZHANG Zhewen. Research on fatiguebehaviour of stainless steel welded tubular T-joints [D]. Hefei: Hefei University of Technology, 2021: 1–89.
12 LOZANO-MINGUEZ E, BRENNAN F P, KOLIOS Α J Reanalysis of offshore T-joint fatigue life predictions based on a complete weld profile model[J]. Renewable Energy, 2014, 71: 486- 494
doi: 10.1016/j.renene.2014.05.064
13 HECTORS K, DE WAELE W Influence of weld geometry on stress concentration factor distributions in tubular joints[J]. Journal of Constructional Steel Research, 2021, 176: 106376
doi: 10.1016/j.jcsr.2020.106376
14 邵永波, LIE Seng-Tjhen K节点应力集中系数的试验和数值研究方法[J]. 工程力学, 2006, 23 (Suppl.1): 79- 85
SHAO Yongbo, LIE Seng-Tjhen Experimental and numerical studies of the stress concentration factor (SCF) of tubular K-joints[J]. Engineering Mechanics, 2006, 23 (Suppl.1): 79- 85
doi: 10.3969/j.issn.1000-4750.2006.z1.016
15 American Welding Society. Structural welding Code-steel: ANSI/AWS D1.1M-2015 [S]. Miami: American Welding Society, 2015.
16 BAO S, LI X, WANG B Study on hot spot stress of three-planar tubular Y-joints under combined axial loads[J]. Thin-Walled Structures, 2019, 140: 478- 494
doi: 10.1016/j.tws.2019.03.025
17 袁智深, 姚尧, 卢微然, 等 平面外弯矩作用下T形圆管节点热点应力分布[J]. 湖南大学学报: 自然科学版, 2022, 49 (5): 151- 159
YUAN Zhishen, YAO Yao, LU Weiran, et al Hot spot stress distribution of CHS T-joints under out-of-plane bending[J]. Journal of Hunan University: Natural Sciences, 2022, 49 (5): 151- 159
doi: 10.16339/j.cnki.hdxbzkb.2022059
18 AHMADI H, ZAVVAR E The effect of multi-planarity on the SCFs in offshore tubular KT-joints subjected to in-plane and out-of-plane bending loads[J]. Thin-Walled Structures, 2016, 106: 148- 165
doi: 10.1016/j.tws.2016.04.020
19 奚丽生, 方培君, 黄越, 等 海洋平台T型管节点相贯焊缝外形尺寸研究[J]. 海洋工程, 1990, 8 (2): 27- 34
XI Lisheng, FANG Peijun, HUANG Yue, et al A study of weld profiles of tubular T joints for offshore platforms[J]. The Ocean Engineering, 1990, 8 (2): 27- 34
doi: 10.16483/j.issn.1005-9865.1990.02.004
20 陈惠南, 赵怀普, 武国庆 T型管节点钢模型轴载下的热点应力测量和疲劳裂纹萌生寿命监测[J]. 机械强度, 1988, 10 (2): 52- 61
CHEN Huinan, ZHAO Huaipu, WU Guoqing The hot spot stresses measurment and initial fatigue crack life detection of steel welded tubular T joints under axial loading[J]. Journal of Mechanical Strength, 1988, 10 (2): 52- 61
21 兰德省, 易伟同, 祝磊, 等 基于三维扫描模型的兵马俑足踝有限元分析[J]. 文物保护与考古科学, 2021, 33 (3): 19- 26
LAN Desheng, YI Weitong, ZHU Lei, et al FEM simulation on the ankles of Terra-cotta Warriors based on 3D scanning models[J]. Sciences of Conservation and Archaeology, 2021, 33 (3): 19- 26
doi: 10.16334/j.cnki.cn31-1652/k.20200801852
22 KOLIOS A, WANG L, MEHMANPARAST A, et al Determination of stress concentration factors in offshore wind welded structures through a hybrid experimental and numerical approach[J]. Ocean Engineering, 2019, 178: 38- 47
doi: 10.1016/j.oceaneng.2019.02.073
23 杨犇, 章子华, 周春恒, 等 基于三维扫描的带肋钢筋-混凝土界面黏结失效精细有限元分析[J]. 工程力学, 2024, 41 (Suppl.1): 215- 221
YANG Ben, ZHANG Zihua, ZHOU Chunheng, et al Refined finite element analysis of interfacial bonding failure between ribbed steel rebar and concrete upon 3D scanning[J]. Engineering Mechanics, 2024, 41 (Suppl.1): 215- 221
doi: 10.6052/j.issn.1000-4750.2023.05.S024
24 Det Norske Veritas. Design of offshore wind turbine structures: DNV-OS-J101 [S]. Oslo: Det Norske Veritas, 2011.
25 鲍石榴. 海上风机三桩基础结构三平面Y型焊接钢管节点热点应力研究 [D]. 大连: 大连理工大学, 2020: 1–201.
BAO Shiliu. Study on hot spot stress for welded steel three-planar tubular Y-joints of offshore wind turbine tripod substructure [D]. Dalian: Dalian University of Technology, 2020: 1–201.
26 LEE Y, PAN J, HATHAWAY R B, 等. 疲劳试验测试分析理论与实践 [M]. 张然治, 译. 北京: 国防工业出版社, 2011: 5–7.
27 陆国庆. T型管节点疲劳热点应力集中系数的分析方法研究 [D]. 重庆: 重庆交通大学, 2024: 1–89.
LU Guoqing. Analysis method of fatigue hot spot stress concentration factor of tubular T-joints [D]. Chongqing: Chongqing Jiaotong University, 2024: 1–89.
28 THIBAUX P, COOREMAN S. Computation of stress concentration factors for tubular joints [C]// Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes: AMSE, 2013: 9–14.
29 EFTHYMIOU M. Development of SCF formulae and generalized influence functions for use in fatigue analysis [C]// Proceedings of Offshore Tubular Joints Conference, Recent Developments in Tubular Joint Technology. Surrey: UEG Offshore Research, 1988: 1–33.
30 祝磊, 叶桢翔, 赵岩 焊缝建模对T型圆钢管节点轴压承载力计算的影响[J]. 建筑结构, 2013, 43 (Suppl.2): 498- 501
ZHU Lei, YE Zhenxiang, ZHAO Yan Effect of weld modeling on computation of axial compressive strength of circular steel tubular T-joints[J]. Building Structure, 2013, 43 (Suppl.2): 498- 501
[1] 李明婉,房胜,李哲. 非对称结构的高光谱与激光雷达图像分类模型[J]. 浙江大学学报(工学版), 2025, 59(12): 2539-2544.
[2] 陈江浩,杨军. 结合深度可分离卷积的多源遥感融合影像目标检测[J]. 浙江大学学报(工学版), 2025, 59(12): 2545-2555.
[3] 胡明志,孙俊,杨彪,常开荣,杨俊龙. 基于CNN和Transformer聚合的遥感图像超分辨率重建[J]. 浙江大学学报(工学版), 2025, 59(5): 938-946.
[4] 张振利,胡新凯,李凡,冯志成,陈智超. 基于CNN和Efficient Transformer的多尺度遥感图像语义分割算法[J]. 浙江大学学报(工学版), 2025, 59(4): 778-786.
[5] 杨金辉,高贤君,寇媛,于盛妍,许磊,杨元维. 融合SAR的光学遥感影像双激活门控卷积厚云去除[J]. 浙江大学学报(工学版), 2025, 59(4): 804-813.
[6] 梁龙学,贺成龙,吴小所,闫浩文. 全局信息提取与重建的遥感图像语义分割网络[J]. 浙江大学学报(工学版), 2024, 58(11): 2270-2279.
[7] 宦海,盛宇,顾晨曦. 基于遥感图像道路提取的全局指导多特征融合网络[J]. 浙江大学学报(工学版), 2024, 58(4): 696-707.
[8] 冯志成,杨杰,陈智超. 基于轻量级Transformer的城市路网提取方法[J]. 浙江大学学报(工学版), 2024, 58(1): 40-49.
[9] 刘春娟,乔泽,闫浩文,吴小所,王嘉伟,辛钰强. 基于多尺度互注意力的遥感图像语义分割网络[J]. 浙江大学学报(工学版), 2023, 57(7): 1335-1344.
[10] 马永亮,高志扬,韩超帅,左青锋,陆国庆. 短期风浪波高周期联合分布研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1111-1119.
[11] 张云佐,郭威,蔡昭权,李文博. 联合多尺度与注意力机制的遥感图像目标检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2215-2223.
[12] 蒋昊,徐海松. 基于直方图与图像分块融合的阶调映射算法[J]. 浙江大学学报(工学版), 2022, 56(11): 2224-2231.
[13] 李凯,林宇舜,吴晓琳,廖飞宇. 基于多尺度融合与注意力机制的小目标车辆检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2241-2250.
[14] 葛勇强,曹晨,陈家旺,徐春莺,周朋,高峰,梁涛,方玉平. 基于MEMS传感阵列的海底地形形变原位监测装置[J]. 浙江大学学报(工学版), 2022, 56(9): 1732-1739.
[15] 吴泽康,赵姗,李宏伟,姜懿芮. 遥感图像语义分割空间全局上下文信息网络[J]. 浙江大学学报(工学版), 2022, 56(4): 795-802.