计算机技术 |
|
|
|
|
基于多尺度融合与注意力机制的小目标车辆检测 |
李凯( ),林宇舜*( ),吴晓琳,廖飞宇 |
福建农林大学 交通与土木工程学院,福建 福州 350108 |
|
Small target vehicle detection based on multi-scale fusion technology and attention mechanism |
Kai LI( ),Yu-shun LIN*( ),Xiao-lin WU,Fei-yu LIAO |
School of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China |
引用本文:
李凯,林宇舜,吴晓琳,廖飞宇. 基于多尺度融合与注意力机制的小目标车辆检测[J]. 浙江大学学报(工学版), 2022, 56(11): 2241-2250.
Kai LI,Yu-shun LIN,Xiao-lin WU,Fei-yu LIAO. Small target vehicle detection based on multi-scale fusion technology and attention mechanism. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2241-2250.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.11.015
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I11/2241
|
1 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). San Diego: IEEE, 2005, 1: 886-893.
|
2 |
KUMAR P, HENIKOFF S, NG P C Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm[J]. Nature Protocols, 2009, 4 (8): 1073- 1081
|
3 |
CHERKASSKY V, MA Y Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural networks, 2004, 17 (1): 113- 126
doi: 10.1016/S0893-6080(03)00169-2
|
4 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
|
5 |
GIRSHICK R. Fast r-cnn [C]// Proceedings of the IEEE International Conference on Computer Vision. Boston: IEEE, 2015: 1440-1448.
|
6 |
REN S, HE K, GIRSHICK R, et al Faster r-cnn: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 1137- 1149
|
7 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society. Las Vegas: IEEE, 2016: 779-788.
|
8 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision, LNCS 9905. Berlin: Springer, 2016: 21-37.
|
9 |
FU C Y, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector [EB/OL]. [2021-11-23]. https://arxiv.org/abs/1701.06659v1.
|
10 |
LI Z, ZHOU F. FSSD: feature fusion single shot multibox detector [EB/OL]. [2021-11-23]. https://arxiv.org/abs/1712.00960.
|
11 |
JEONG J, PARK H, KWAK N. Enhancement of SSD by concatenating feature maps for object detection [EB/OL]. [2021-11-23]. https://arxiv.org/abs/1705.09587.
|
12 |
李航, 朱明 基于深度卷积神经网络的小目标检测算法[J]. 计算机工程与科学, 2020, 42 (4): 649- 657 LI Hang, ZHU Ming A small object detection algorithm based on deep convolutional neural network[J]. Computer Engineering and Science, 2020, 42 (4): 649- 657
doi: 10.3969/j.issn.1007-130X.2020.04.011
|
13 |
CHEN Yu-kang, ZHANG Pei-zhen, LI Ze-ming, et al. Dynamic scale training for object detection [EB/OL]. [2021-11-23].https://arxiv.org/abs/2004.12432v2.
|
14 |
LIU S, HUANG D, WANG Y. Learning spatial fusion for single shot object detection [EB/OL]. [2021-11-23]. https://arxiv.org/abs/1911.09516.
|
15 |
ZOPH B, CUBUK E D, GHIASI G, et al. Learning data augmentation strategies for object detection [C]// European Conference on Computer Vision. Springer, Cham, 2020: 566-583.
|
16 |
WANG T, ANWER R M, CHOLAKKAL H, et al. Learning rich features at high-speed for single-shot object detection [C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Long Beach: IEEE, 2019: 1971-1980.
|
17 |
HU J, SHEN L, SUN G. Squeeze and excitation networks [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City: IEEE, 2018: 7132-7141.
|
18 |
DUAN K, BAI S, XIE L, et al. Centernet: keypoint triplets for object detection [C]// Proceedings of the IEEE/CVF international conference on computer vision. Long Beach: IEEE, 2019: 6569-6578.
|
19 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-yolov4: scaling cross stage partial network [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13029-13038.
|
20 |
YANG G, FENG W, JIN J, et al. Face mask recognition system with YOLOV5 based on image recognition [C]// IEEE 6th International Conference on Computer and Communications (ICCC). Seattle: IEEE, 2020: 1398-1404.
|
21 |
梁鸿, 李洋, 邵明文, 等 基于残差网络和改进特征金字塔的油田作业现场目标检测算法[J]. 科学技术与工程, 2020, 20 (11): 4442- 4450 LIANG Hong, LI Yang, SHAO Ming-wen, et al Field object detection for oilfield operation based on residual network and improved feature pyramid networks[J]. Science Technology and Engineering, 2020, 20 (11): 4442- 4450
doi: 10.3969/j.issn.1671-1815.2020.11.035
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|