| 能源工程、机械工程 |
|
|
|
|
| 通感一体海洋网络技术综述 |
刁奕文1( ),许人东1,2,3,胥国祥3,樊玉成3,印炜3,黄豪彩1,3,*( ) |
1. 浙江大学 海洋学院,浙江 舟山 316021 2. 江苏省海洋信息技术与装备创新中心,江苏 苏州 215223 3. 江苏亨通华海科技股份有限公司,江苏 常熟 215537 |
|
| Review of SMART subsea network systems |
Yiwen DIAO1( ),Rendong XU1,2,3,Guoxiang XU3,Yucheng FAN3,Wei YIN3,Haocai HUANG1,3,*( ) |
1. Ocean College, Zhejiang University, Zhoushan 316021, China 2. Jiangsu Marine Information Technology and Equipment Innovation Center, Suzhou 215223, China 3. Jiangsu Hengtong Marine Cable Systems Limited Company, Changshu 215537, China |
引用本文:
刁奕文,许人东,胥国祥,樊玉成,印炜,黄豪彩. 通感一体海洋网络技术综述[J]. 浙江大学学报(工学版), 2026, 60(2): 248-259.
Yiwen DIAO,Rendong XU,Guoxiang XU,Yucheng FAN,Wei YIN,Haocai HUANG. Review of SMART subsea network systems. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 248-259.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.003
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I2/248
|
| 1 |
Panel on Climate Variability on Decade-to-Century Time Scales, Board on Atmospheric Sciences and Climate, Commission on Geosciences, Environment, and Resources, et al. Decade-to-century-scale climate variability and change: a science strategy [M]. Washington, D. C. : National Academies Press, 1998.
|
| 2 |
Ocean Studies Board, Commission on Geosciences, Environment, and Resources, National Research Council. Global ocean science: toward an integrated approach [M]. Washington, D. C. : National Academies Press, 2000.
|
| 3 |
GATTUSO J P, MAGNAN A, BILLÉ R, et al Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios[J]. Science, 2015, 349 (6243): aac4722
doi: 10.1126/science.aac4722
|
| 4 |
ZEEBE R E, ZACHOS J C Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371 (2001): 20120006
|
| 5 |
RICKE K L, CALDEIRA K Natural climate variability and future climate policy[J]. Nature Climate Change, 2014, 4 (5): 333- 338
doi: 10.1038/nclimate2186
|
| 6 |
PURKEY S G, JOHNSON G C Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets[J]. Journal of Climate, 2010, 23 (23): 6336- 6351
doi: 10.1175/2010JCLI3682.1
|
| 7 |
SADAI S, CONDRON A, DECONTO R, et al Future climate response to Antarctic ice sheet melt caused by anthropogenic warming[J]. Science Advances, 2020, 6 (39): eaaz1169
doi: 10.1126/sciadv.aaz1169
|
| 8 |
WIGLEY T M L, RAPER S C B Thermal expansion of sea water associated with global warming[J]. Nature, 1987, 330 (6144): 127- 131
doi: 10.1038/330127a0
|
| 9 |
PAOLO F S, FRICKER H A, PADMAN L Volume loss from Antarctic ice shelves is accelerating[J]. Science, 2015, 348 (6232): 327- 331
doi: 10.1126/science.aaa0940
|
| 10 |
LI L, SWITZER A D, WANG Y, et al A modest 0.5-m rise in sea level will double the tsunami hazard in Macau[J]. Science Advances, 2018, 4 (8): eaat1180
doi: 10.1126/sciadv.aat1180
|
| 11 |
FUKAO Y, SANDANBATA O, SUGIOKA H, et al Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan[J]. Science Advances, 2018, 4 (4): eaao0219
doi: 10.1126/sciadv.aao0219
|
| 12 |
汪品先 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28 (5): 517- 520 WANG Pinxian Oceanography from inside the ocean[J]. Advances in Earth Science, 2013, 28 (5): 517- 520
|
| 13 |
MCFARLANE J R. Tethered and untethered vehicles: the future is in the past [C]// Proceedings of the OCEANS 2008. Quebec City: IEEE, 2009: 1–4.
|
| 14 |
陈鹰, 瞿逢重, 宋宏, 等. 海洋技术教程 [M]. 杭州: 浙江大学出版社, 2012.
|
| 15 |
FANG C, SONG K, YAN Z, et al Monitoring phycocyanin in global inland waters by remote sensing: progress and future developments[J]. Water Research, 2025, 275: 123176
doi: 10.1016/j.watres.2025.123176
|
| 16 |
INSTITUTION W H O, JAYNE S, ROEMMICH D, et al The Argo program: present and future[J]. Oceanography, 2017, 30 (2): 18- 28
doi: 10.5670/oceanog.2017.213
|
| 17 |
刘放. 摘箬山岛智能海洋观测网信息系统的设计与实现 [D]. 杭州: 浙江大学, 2016: 1–59. LIU Fang. The design and implementation of Z2ERO smart ocean observatory information system [D]. Hangzhou: Zhejiang University, 2016: 1–59.
|
| 18 |
BARNES C R, BEST M M R, JOHNSON F R, et al Challenges, benefits, and opportunities in installing and operating cabled ocean observatories: perspectives from NEPTUNE Canada[J]. IEEE Journal of Oceanic Engineering, 2013, 38 (1): 144- 157
doi: 10.1109/JOE.2012.2212751
|
| 19 |
许惠平, 张艳伟, 徐昌伟, 等 东海海底观测小衢山试验站[J]. 科学通报, 2011, 56 (22): 1839- 1845 XU Huiping, ZHANG Yanwei, XU Changwei, et al Coastal seafloor observatory at Xiaoqushan in the East China Sea[J]. Chinese Science Bulletin, 2011, 56 (22): 1839- 1845
doi: 10.1360/csb2011-56-22-1839
|
| 20 |
PETITT R A, HARRIS D W, WOODING B, et al The Hawaii-2 observatory[J]. IEEE Journal of Oceanic Engineering, 2002, 27 (2): 245- 253
doi: 10.1109/JOE.2002.1002479
|
| 21 |
FAVALI P, BERANZOLI L, DE SANTIS A. Seafloor observatories: a new vision of the Earth from the Abyss [M]. Berlin: Springer, 2015: 676.
|
| 22 |
TURNER R A, SMITH K S Transformer inrush currents[J]. IEEE Industry Applications Magazine, 2010, 16 (5): 14- 19
doi: 10.1109/MIAS.2010.937440
|
| 23 |
陈鹰, 杨灿军, 陶春辉, 等. 海底观测系统 [M]. 北京: 海洋出版社, 2006.
|
| 24 |
LEVIN L A, LE BRIS N The deep ocean under climate change[J]. Science, 2015, 350 (6262): 766- 768
doi: 10.1126/science.aad0126
|
| 25 |
MARJO V, IAN C, ELVA E B, et al. Global open oceans and deep seabed (GOODS): biogeographic classification [S]. [S.l.]: UNESCO, 2009.
|
| 26 |
YOU Y Harnessing telecoms cables for science[J]. Nature, 2010, 466 (7307): 690- 691
doi: 10.1038/466690a
|
| 27 |
CHESNOY J, ANTONA J C. Undersea fiber communication systems [M]. Cambridge: [s.n.], 2015.
|
| 28 |
叶胤, 王超, 莫仁芸 海底光缆通信系统技术发展分析[J]. 广东通信技术, 2021, 41 (1): 19- 23 YE Yin, WANG Chao, MO Renyun Technical development analysis of submarine optical cable communication system[J]. Guangdong Communication Technology, 2021, 41 (1): 19- 23
|
| 29 |
KASAHARA J, UTADA H, SATO T, et al Submarine cable OBS using a retired submarine telecommunication cable: GeO-TOC program[J]. Physics of the Earth and Planetary Interiors, 1998, 108 (2): 113- 127
doi: 10.1016/S0031-9201(98)00090-9
|
| 30 |
HOWE B. Ocean observing using SMART subsea telecommunications cable systems [C]// AGU Fall Meeting 2015. San Francisco: AGU, 2015.
|
| 31 |
HOWE B M, ARBIC B K, AUCAN J, et al SMART cables for observing the global ocean: science and implementation[J]. Frontiers in Marine Science, 2019, 6: 424
doi: 10.3389/fmars.2019.00424
|
| 32 |
TILMANN F, HOWE B, BUTLER R, et al. Proposal for using commercial submarine telecommunications cables for monitoring earthquakes and tsunamis-the SMART cable concept [C]// EGU General Assembly 2017 Conference. Vienna: EGU, 2017: 14587.
|
| 33 |
SNOWDEN D, TSONTOS V M, HANDEGARD N O, et al Data interoperability between elements of the global ocean observing system[J]. Frontiers in Marine Science, 2019, 6: 442
doi: 10.3389/fmars.2019.00442
|
| 34 |
TANHUA T, APPELTANS W, BAX N, et al. GOOS, FOO and governance - assessments and strategies [J]. Frontiers in Marine Science, 2019: 1–35.
|
| 35 |
ROWE C, HOWE B, BEGNAUD M, et al. Science monitoring and reliable telecommunications (SMART) cables: the future of global undersea observing [C]// Proceedings of the IEEE Photonics Society Summer Topicals Meeting Series. Bridgetown: IEEE, 2024: 1–2.
|
| 36 |
MULLER-KARGER F E, MILOSLAVICH P, BAX N J, et al Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks[J]. Frontiers in Marine Science, 2018, 5: 211
doi: 10.3389/fmars.2018.00211
|
| 37 |
The Global Ocean Observing System. Essential ocean variables [EB/OL]. [2025–01–26]. https://goosocean.org/what-we-do/framework/essential-ocean-variables/.
|
| 38 |
RENNINGER-ROJAS K, TROSSMAN D, HOWE B, et al. Assessing the potential of SMART subsea cables for monitoring essential ocean variables [C]// 2024 Ocean Sciences Meeting. New Orleans: AGU, 2024.
|
| 39 |
JOHNSON G C Quantifying Antarctic bottom water and North Atlantic deep water volumes[J]. Journal of Geophysical Research: Oceans, 2008, 113 (C5): 2007JC004477
doi: 10.1029/2007JC004477
|
| 40 |
SMEED D A, JOSEY S A, BEAULIEU C, et al The North Atlantic Ocean is in a state of reduced overturning[J]. Geophysical Research Letters, 2018, 45 (3): 1527- 1533
doi: 10.1002/2017GL076350
|
| 41 |
JOHNSON G C, LYMAN J M, PURKEY S G Informing deep Argo array design using Argo and full-depth hydrographic section data[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32 (11): 2187- 2198
doi: 10.1175/JTECH-D-15-0139.1
|
| 42 |
MCCARTHY G D, SMEED D A, JOHNS W E, et al Measuring the Atlantic meridional overturning circulation at 26°N[J]. Progress in Oceanography, 2015, 130: 91- 111
doi: 10.1016/j.pocean.2014.10.006
|
| 43 |
SUSAN LOZIER M, BACON S, BOWER A S, et al Overturning in the subpolar north Atlantic program: a new international ocean observing system[J]. Bulletin of the American Meteorological Society, 2017, 98 (4): 737- 752
doi: 10.1175/BAMS-D-16-0057.1
|
| 44 |
MEINEN C S, GARZOLI S L, PEREZ R C, et al Characteristics and causes of Deep Western Boundary Current transport variability at 34.5°S during 2009–2014[J]. Ocean Science, 2017, 13 (1): 175- 194
doi: 10.5194/os-13-175-2017
|
| 45 |
TALLEY L D, FEELY R A, SLOYAN B M, et al Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography[J]. Annual Review of Marine Science, 2016, 8: 185- 215
doi: 10.1146/annurev-marine-052915-100829
|
| 46 |
ELIPOT S, FRAJKA-WILLIAMS E, HUGHES C W, et al The observed North Atlantic meridional overturning circulation: its meridional coherence and ocean bottom pressure[J]. Journal of Physical Oceanography, 2014, 44 (2): 517- 537
doi: 10.1175/JPO-D-13-026.1
|
| 47 |
HUGHES C W, ELIPOT S, MORALES MAQUEDA M Á, et al Test of a method for monitoring the geostrophic meridional overturning circulation using only boundary measurements[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30 (4): 789- 809
doi: 10.1175/JTECH-D-12-00149.1
|
| 48 |
HUGHES C W, WILLIAMS J, BLAKER A, et al A window on the deep ocean: the special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation[J]. Progress in Oceanography, 2018, 161: 19- 46
doi: 10.1016/j.pocean.2018.01.011
|
| 49 |
MAKOWSKI J K, CHAMBERS D P, BONIN J A Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2015, 120 (6): 4245- 4259
doi: 10.1002/2014JC010575
|
| 50 |
CHAMBERS D P, SCHRÖTER J Measuring ocean mass variability from satellite gravimetry[J]. Journal of Geodynamics, 2011, 52 (5): 333- 343
doi: 10.1016/j.jog.2011.04.004
|
| 51 |
TAPLEY B D, BETTADPUR S, WATKINS M, et al The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31 (9): 2004GL019920
doi: 10.1029/2004GL019920
|
| 52 |
FLECHTNER F, NEUMAYER K H, DAHLE C, et al. What can be expected from the GRACE-FO laser ranging interferometer for earth science applications? [M]// CAZENAVE A, CHAMPOLLION N, BENVENISTE J, et al. Remote sensing and water resources. [S.l.]: Springer, 2016: 263–280.
|
| 53 |
MÜLLER M, ARBIC B K, MITROVICA J X Secular trends in ocean tides: observations and model results[J]. Journal of Geophysical Research: Oceans, 2011, 116 (C5): C05013
|
| 54 |
RAY R D Secular changes of the M2 tide in the Gulf of Maine[J]. Continental Shelf Research, 2006, 26 (3): 422- 427
doi: 10.1016/j.csr.2005.12.005
|
| 55 |
RAY R D Precise comparisons of bottom-pressure and altimetric ocean tides[J]. Journal of Geophysical Research: Oceans, 2013, 118 (9): 4570- 4584
doi: 10.1002/jgrc.20336
|
| 56 |
MÜLLER M, CHERNIAWSKY J Y, FOREMAN M G G, et al Seasonal variation of the M2 tide[J]. Ocean Dynamics, 2014, 64 (2): 159- 177
doi: 10.1007/s10236-013-0679-0
|
| 57 |
BERNARD E, TITOV V Evolution of tsunami warning systems and products[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373 (2053): 20140371
doi: 10.1098/rsta.2014.0371
|
| 58 |
SONG Y T, FUKUMORI I, SHUM C K, et al Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean[J]. Geophysical Research Letters, 2012, 39 (5): L05606
|
| 59 |
SALAREE A, HOWE B M, HUANG Y, et al A numerical study of SMART cables potential in marine hazard early warning for the Sumatra and Java regions[J]. Pure and Applied Geophysics, 2023, 180 (5): 1717- 1749
doi: 10.1007/s00024-022-03004-0
|
| 60 |
ANGOVE M, ARCAS D, BAILEY R, et al Ocean observations required to minimize uncertainty in global tsunami forecasts, warnings, and emergency response[J]. Frontiers in Marine Science, 2019, 6: 350
doi: 10.3389/fmars.2019.00350
|
| 61 |
PAROS J, BERNARD E, DELANEY J, et al. Breakthrough underwater technology holds promise for improved local tsunami warnings [C]// Proceedings of the IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. Tokyo: IEEE, 2011: 1–9.
|
| 62 |
KANAMORI H Mechanism of tsunami earthquakes[J]. Physics of the Earth and Planetary Interiors, 1972, 6 (5): 346- 359
doi: 10.1016/0031-9201(72)90058-1
|
| 63 |
TAPPIN D R, GRILLI S T, HARRIS J C, et al Did a submarine landslide contribute to the 2011 Tohoku tsunami?[J]. Marine Geology, 2014, 357: 344- 361
doi: 10.1016/j.margeo.2014.09.043
|
| 64 |
AMMON C J, JI C, THIO H K, et al Rupture process of the 2004 Sumatra-Andaman earthquake[J]. Science, 2005, 308 (5725): 1133- 1139
doi: 10.1126/science.1112260
|
| 65 |
KANAMORI H, RIVERA L Source inversion of W phase: speeding up seismic tsunami warning[J]. Geophysical Journal International, 2008, 175 (1): 222- 238
doi: 10.1111/j.1365-246X.2008.03887.x
|
| 66 |
DUPUTEL Z, RIVERA L, KANAMORI H, et al W phase source inversion for moderate to large earthquakes (1990–2010)[J]. Geophysical Journal International, 2012, 189 (2): 1125- 1147
doi: 10.1111/j.1365-246X.2012.05419.x
|
| 67 |
WEINSTEIN S, BECKER N, HOWE B, et al. Can SMART cables—a real-time, deep-ocean sensor network—improve tsunami-hazard assessment? Yes! [C]// AGU Fall Meeting 2019. San Francisco: AGU, 2019: NH33A-07.
|
| 68 |
RANASINGHE N, ROWE C, SYRACUSE E, et al Enhanced global seismic resolution using transoceanic SMART cables[J]. Seismological Research Letters, 2018, 89 (1): 77- 85
doi: 10.1785/0220170068
|
| 69 |
BEGNAUD M, ROWE C, CONLEY A, et al. Enhancing Global 3D seismic P-wave models by addition of OBS and SMART cables sensors [C]// AGU Fall Meeting 2023. San Francisco: AGU, 2023: S52A-08.
|
| 70 |
KENNETT B L N, ENGDAHL E R, BULAND R Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 1995, 122 (1): 108- 124
doi: 10.1111/j.1365-246X.1995.tb03540.x
|
| 71 |
AUCAN J, HOWE B. SMART cables sensing the pulse of the planet [C]// 2018 Ocean Sciences Meeting. Portland: AGU, 2018.
|
| 72 |
ITU. JTF funding study [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Documents/JTF%20Report%20Green%20Cable%20Funding%20Study.pdf.
|
| 73 |
ITU. JTF functional requirements [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Documents/Functional-requirements.
|
| 74 |
ITU. JTF wet demonstrator [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Documents/Wet-demonstrator.
|
| 75 |
ITU. JTF website [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Pages/default.aspx.
|
| 76 |
HOWE B M, PANAYOTOU K. SMART submarine telecommunication cables to monitor global change and tsunamis in the global ocean [C]// 4th Underwater Acoustics Conference and Exhibition. Skiathos Island: [s.n.], 2017: 769–776.
|
| 77 |
MA B B, NYSTUEN J A, LIEN R C Prediction of underwater sound levels from rain and wind[J]. the Journal of the Acoustical Society of America, 2005, 117 (6): 3555- 3565
doi: 10.1121/1.1910283
|
| 78 |
YANG J, RISER S, NYSTUEN J, et al Regional rainfall measurements using the passive aquatic listener during the SPURS field campaign[J]. Oceanography, 2015, 28 (1): 124- 133
doi: 10.5670/oceanog.2015.10
|
| 79 |
MELLINGER D, STAFFORD K, MOORE S, et al An overview of fixed passive acoustic observation methods for cetaceans[J]. Oceanography, 2007, 20 (4): 36- 45
doi: 10.5670/oceanog.2007.03
|
| 80 |
GONZALEZ-HERRAEZ M, FERNANDEZ-RUIZ M R, MAGALHAES R, et al. Distributed acoustic sensing for seismic monitoring [C]// Proceedings of the Optical Fiber Communications Conference and Exhibition. San Francisco: IEEE, 2021: 1–3.
|
| 81 |
WILLIAMS E F, FERNÁNDEZ-RUIZ M R, MAGALHAES R, et al Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 2019, 10: 5778
doi: 10.1038/s41467-019-13262-7
|
| 82 |
HOWE B SMART submarine cable technology can facilitate acoustics on the global scale[J]. The Journal of the Acoustical Society of America, 2023, 154 (Suppl.4): A176
|
| 83 |
张若愚, 袁伟杰, 崔原豪, 等 面向6G的大规模MIMO通信感知一体化: 现状与展望[J]. 移动通信, 2022, 46 (6): 17- 23 ZHANG Ruoyu, YUAN Weijie, CUI Yuanhao, et al Integrated sensing and communications with massive MIMO for 6G: status and prospect[J]. Mobile Communications, 2022, 46 (6): 17- 23
|
| 84 |
ZHOU W, ZHANG R, CHEN G, et al Integrated sensing and communication waveform design: a survey[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1930- 1949
doi: 10.1109/OJCOMS.2022.3215683
|
| 85 |
任红, 张若愚, 缪晨, 等 面向智慧海洋的MIMO探测通信一体化波束成形设计[J]. 数字海洋与水下攻防, 2023, 6 (6): 648- 655 REN Hong, ZHANG Ruoyu, MIAO Chen, et al Beamforming design of MIMO integrated detection and communication for smart ocean[J]. Digital Ocean and Underwater Warfare, 2023, 6 (6): 648- 655
|
| 86 |
HOWE B M, SAGEN H New developments in submarine cable technology can facilitate acoustics in Polar regions and on the global scale[J]. The Journal of the Acoustical Society of America, 2022, 152 (Suppl.4): A73
|
| 87 |
LENTZ S, HOWE B. Scientific monitoring and reliable telecommunications (SMART) cable systems: integration of sensors into telecommunications repeaters [C]// Proceedings of the OCEANS - MTS/IEEE Kobe Techno-Oceans. Kobe: IEEE, 2018: 1–7.
|
| 88 |
MATSUMOTO H, AARAKI E, KAWAGUCHI K Experimental evaluation of initial characteristics of DONET pressure sensors[J]. Marine Technology Society Journal, 2018, 52 (3): 109- 119
doi: 10.4031/MTSJ.52.3.3
|
| 89 |
WILCOCK W, MANALANG D, HARRINGTON M, et al. A Seafloor test of the A-0-A approach to calibrating pressure sensors for vertical geodesy [C]// AGU Fall Meeting 2017. New Orleans: AGU, 2017.
|
| 90 |
FOUCH M, HOWE B, LENTZ S. SMART (sensor monitoring and reliable telecommunications) repeaters: sensor-enabled submarine fiber optic repeaters for multi-scale and multi-use monitoring and observing [C]// Ocean Visions Summit 2021. [S.l.]: AGU, 2021.
|
| 91 |
PAPAPAVLOU C, PAXIMADIS K, UZUNIDIS D, et al Toward SDM-based submarine optical networks: a review of their evolution and upcoming trends[J]. Telecom, 2022, 3 (2): 234- 280
doi: 10.3390/telecom3020015
|
| 92 |
COLAS F, PERHIRIN S, AUDO F, et al. Power and data over fiber for sea-floor observatories [C]// Suboptic 2016. Dubai: HAL, 2016.
|
| 93 |
FOUCH M, LENTZ S, HOWE B, et al. SMART cables: integration of environmental sensors into submarine telecommunications cables for improved ocean monitoring [C]// EGU General Assembly 2022 Conference. Vienna: EGU, 2022.
|
| 94 |
许人东, 黄豪彩, 胥国祥, 等. 一种可快速更换扩展的海底监测用海底光缆分支器: CN115201983A [P]. 2022–10–18.
|
| 95 |
许人东, 黄豪彩, 胥国祥, 等. 一种模块化可用于监测和通信的海缆分支器: CN115201984B [P]. 2023–12–29.
|
| 96 |
IRRGANG C, WEBER T, THOMAS M. Assimilation of SMART cable observations to improve global ocean models [C]// AGU Fall Meeting 2018. Washington, D. C. : AGU, 2018.
|
| 97 |
RENNINGER-ROJAS K, TROSSMAN D, HARRISON C, et al. Assessing the potential of SMART subsea cables for advanced ocean monitoring [C]// Proceedings of the OCEANS 2024 - Singapore. Singapore: IEEE, 2024: 1–11.
|
| 98 |
DE SANTIS A, CHIAPPINI M, MARINARO G, et al InSEA project: initiatives in supporting the consolidation and enhancement of the EMSO infrastructure and related activities[J]. Frontiers in Marine Science, 2022, 9: 846701
doi: 10.3389/fmars.2022.846701
|
| 99 |
MARINARO G, HOWE B, LENTZ S, et al. Sensor enabled scientific monitoring and reliable telecommunications (SMART) cable wet demonstrator project at EMSO Western Ionian Sea facility [C]// AGU Fall Meeting 2019. San Francisco: AGU, 2019.
|
| 100 |
GROSSMAN J, KONG L, HOWE B, et al. Use of SMART subsea cables for faster earthquake and tsunami wave detection: Vanuatu-New Caledonia [C]// AGU Fall Meeting 2022. Chicago: AGU, 2022.
|
| 101 |
TILMANN F, HOWE B, BUTLER R, et al. SMART submarine cable applications in earthquake and tsunami science and early warning [R]. Potsdam: [s.n.], 2017.
|
| 102 |
NEFF P, ANDREASEN J, ROOP H, et al. Antarctic subsea cable workshop report: high-speed connectivity needs to advance US Antarctic science [R]. Saint Paul: [s.n.], 2021.
|
| 103 |
ROWE C A, HOWE B M, FOUCH M J, et al SMART cables observing the oceans and earth[J]. Marine Technology Society Journal, 2022, 56 (5): 13- 25
doi: 10.4031/MTSJ.56.5.3
|
| 104 |
DAÑOBEITIA J, SORRIBAS J, PIRENNE B, et al. Ocean observing systems combining SMART cables with seafloor observatories [C]// AGU Fall Meeting 2024. Washington, D. C: [s.n.], 2024.
|
| 105 |
PIRENNE B, MORAN K, HOWE B. Real-time, year-round, cross-Arctic observations integrating three complementary technologies into submarine telecommunication cables [C]// Proceedings of the OCEANS 2024. Halifax: IEEE, 2024: 1–4.
|
| 106 |
THIELE T. Blue infrastructure finance: a new approach, integrating nature-based solutions for coastal resilience [R]. [S.l.]: IUCN, 2020.
|
| 107 |
HOWE B M, ANGOVE M, AUCAN J, et al SMART subsea cables for observing the Earth and ocean, mitigating environmental hazards, and supporting the blue economy[J]. Frontiers in Earth Science, 2022, 9: 775544
doi: 10.3389/feart.2021.775544
|
| 108 |
HOWE B M, BUTLER R, JOINT TASK FORCE U. Emerging subsea networks: SMART cable systems for science and society [C]// 2016 Ocean Sciences Meeting. New Orleans: AGU, 2016.
|
| 109 |
HOWE B, TILMANN F, HEIMBACH P, et al. Ocean and earth observations with SMART subsea cables supporting the united nations decade of ocean science for sustainable development [C]// 28th General Assembly of the International Union of Geodesy and Geophysics 2023. Berlin: [s.n.], 2023.
|
| 110 |
TANHUA T, POULIQUEN S, HAUSMAN J, et al Ocean FAIR data services[J]. Frontiers in Marine Science, 2019, 6: 440
doi: 10.3389/fmars.2019.00440
|
| 111 |
STROLLO A, CAMBAZ D, CLINTON J, et al EIDA: the European integrated data archive and service infrastructure within ORFEUS[J]. Seismological Research Letters, 2021, 92 (3): 1788- 1795
doi: 10.1785/0220200413
|
| 112 |
KONG L, HOWE B. SMART subsea cables for observing the ocean and earth: update for ocean decade tsunami programme [C]// AGU Fall Meeting 2021. New Orleans: AGU, 2021.
|
| 113 |
ROWE C, HOWE B, ANGOVE M, et al. An Update on the SMART cables initiative for observing the ocean and earth [C]// AGU Fall Meeting 2022. Chicago: AGU, 2022.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|