Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (2): 248-259    DOI: 10.3785/j.issn.1008-973X.2026.02.003
能源工程、机械工程     
通感一体海洋网络技术综述
刁奕文1(),许人东1,2,3,胥国祥3,樊玉成3,印炜3,黄豪彩1,3,*()
1. 浙江大学 海洋学院,浙江 舟山 316021
2. 江苏省海洋信息技术与装备创新中心,江苏 苏州 215223
3. 江苏亨通华海科技股份有限公司,江苏 常熟 215537
Review of SMART subsea network systems
Yiwen DIAO1(),Rendong XU1,2,3,Guoxiang XU3,Yucheng FAN3,Wei YIN3,Haocai HUANG1,3,*()
1. Ocean College, Zhejiang University, Zhoushan 316021, China
2. Jiangsu Marine Information Technology and Equipment Innovation Center, Suzhou 215223, China
3. Jiangsu Hengtong Marine Cable Systems Limited Company, Changshu 215537, China
 全文: PDF(695 KB)   HTML
摘要:

现有的海洋观测手段存在诸多局限. 通感一体海洋网络技术通过在海底通信光缆中集成温度、压力、加速度等核心传感器,构建兼具通信与科学监测功能的全球观测网络,以极低的增量成本实现对深海环境变量的全球长期原位观测,显著提升海洋自然灾害预警能力,展现出变革性的科技潜力和广阔的应用前景. 为此,介绍通感一体网络技术的原理、关键设备选型及项目实施方案,聚焦该技术在不同领域的应用,探讨可持续发展因素,为未来发展提供指导性建议.

关键词: 通感一体海洋网络技术海底通信光缆深海观测气候变化海洋自然灾害地震海啸预警    
Abstract:

Existing ocean observation methods face significant limitations. The science monitoring and reliable telecommunications (SMART) subsea network integrates key sensors, including temperature, pressure, and acceleration, into submarine communication cables to establish a global observation network that combines telecommunications with scientific monitoring. Long-term in-situ observation of deep-sea environmental variables is enabled globally at a minimal incremental cost, while marine natural hazard early warning capabilities are significantly enhanced, demonstrating transformative technological potential and broad application prospects. The technical principles, key equipment selection, and project implementation strategies of the SMART cable were introduced, focusing on its applications across various fields. Additionally, the sustainability factors were evaluated, and strategic recommendations for future development were provided.

Key words: science monitoring and reliable telecommunications (SMART) subsea network    submarine telecommunication cables    deep-sea observation    climate change    marine natural hazards    earthquake and tsunami early warning
收稿日期: 2025-03-04 出版日期: 2026-02-03
CLC:  P 731  
基金资助: 2024年度长三角科技创新共同体联合攻关计划项目(2024CSJGG2600).
通讯作者: 黄豪彩     E-mail: yiwendiao@zju.edu.cn;hchuang@zju.edu.cn
作者简介: 刁奕文(2001—),男,硕士生,从事海洋工程与技术研究. orcid.org/0009-0000-7363-7094. E-mail:yiwendiao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刁奕文
许人东
胥国祥
樊玉成
印炜
黄豪彩

引用本文:

刁奕文,许人东,胥国祥,樊玉成,印炜,黄豪彩. 通感一体海洋网络技术综述[J]. 浙江大学学报(工学版), 2026, 60(2): 248-259.

Yiwen DIAO,Rendong XU,Guoxiang XU,Yucheng FAN,Wei YIN,Haocai HUANG. Review of SMART subsea network systems. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 248-259.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.003        https://www.zjujournals.com/eng/CN/Y2026/V60/I2/248

物理化学生物与生态系统
温度溶解氧浮游动植物的生物量与多样性
海底压力叶绿素鱼类的分布和丰度
海表高度无机碳微生物的生物量与多样性
盐度悬浮颗粒物硬珊瑚的覆盖率与组成
海表热通量营养物质红树林的覆盖率与组成
表 1  部分基本海洋变量
参数数值
量程/℃?5~+35
初始精度/℃±0.001
稳定性/(℃·a?1)0.002
采样率/Hz0.1
采样分辨率/bit34
表 2  温度传感器性能指标
参数数值
量程/MPa0~73
超压耐受性/MPa84
精度/mm±1
稳定期后的最大允许漂移/(kPa·a?1)2
本底噪声/(Pa2·Hz?1)0.14
采样率/Hz20
采样分辨率/bit32
补偿传感器采样率/Hz20
补偿传感器采样分辨率/bit24
表 3  压力传感器性能指标
参数数值
量程/g±1.5
频率响应/Hz0.1~2000
谐振频率/Hz2000
交叉轴灵敏度/%<1
噪声密度/(g·Hz?0.5)≤2.0×10?9
采样率/Hz400
采样分辨率/bit24
表 4  三轴加速度传感器性能指标
图 1  传感器的2种安装方式
数据源fs/Hzn/bitRb/(bit·s?1)
X轴加速度400249 600
Y轴加速度400249 600
Z轴加速度400249 600
温度0.1242.4
压力2024480
原始数据总速率29 282.4
表 5  传感器数据带宽
1 Panel on Climate Variability on Decade-to-Century Time Scales, Board on Atmospheric Sciences and Climate, Commission on Geosciences, Environment, and Resources, et al. Decade-to-century-scale climate variability and change: a science strategy [M]. Washington, D. C. : National Academies Press, 1998.
2 Ocean Studies Board, Commission on Geosciences, Environment, and Resources, National Research Council. Global ocean science: toward an integrated approach [M]. Washington, D. C. : National Academies Press, 2000.
3 GATTUSO J P, MAGNAN A, BILLÉ R, et al Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios[J]. Science, 2015, 349 (6243): aac4722
doi: 10.1126/science.aac4722
4 ZEEBE R E, ZACHOS J C Long-term legacy of massive carbon input to the Earth system: Anthropocene versus Eocene[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371 (2001): 20120006
5 RICKE K L, CALDEIRA K Natural climate variability and future climate policy[J]. Nature Climate Change, 2014, 4 (5): 333- 338
doi: 10.1038/nclimate2186
6 PURKEY S G, JOHNSON G C Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets[J]. Journal of Climate, 2010, 23 (23): 6336- 6351
doi: 10.1175/2010JCLI3682.1
7 SADAI S, CONDRON A, DECONTO R, et al Future climate response to Antarctic ice sheet melt caused by anthropogenic warming[J]. Science Advances, 2020, 6 (39): eaaz1169
doi: 10.1126/sciadv.aaz1169
8 WIGLEY T M L, RAPER S C B Thermal expansion of sea water associated with global warming[J]. Nature, 1987, 330 (6144): 127- 131
doi: 10.1038/330127a0
9 PAOLO F S, FRICKER H A, PADMAN L Volume loss from Antarctic ice shelves is accelerating[J]. Science, 2015, 348 (6232): 327- 331
doi: 10.1126/science.aaa0940
10 LI L, SWITZER A D, WANG Y, et al A modest 0.5-m rise in sea level will double the tsunami hazard in Macau[J]. Science Advances, 2018, 4 (8): eaat1180
doi: 10.1126/sciadv.aat1180
11 FUKAO Y, SANDANBATA O, SUGIOKA H, et al Mechanism of the 2015 volcanic tsunami earthquake near Torishima, Japan[J]. Science Advances, 2018, 4 (4): eaao0219
doi: 10.1126/sciadv.aao0219
12 汪品先 从海洋内部研究海洋[J]. 地球科学进展, 2013, 28 (5): 517- 520
WANG Pinxian Oceanography from inside the ocean[J]. Advances in Earth Science, 2013, 28 (5): 517- 520
13 MCFARLANE J R. Tethered and untethered vehicles: the future is in the past [C]// Proceedings of the OCEANS 2008. Quebec City: IEEE, 2009: 1–4.
14 陈鹰, 瞿逢重, 宋宏, 等. 海洋技术教程 [M]. 杭州: 浙江大学出版社, 2012.
15 FANG C, SONG K, YAN Z, et al Monitoring phycocyanin in global inland waters by remote sensing: progress and future developments[J]. Water Research, 2025, 275: 123176
doi: 10.1016/j.watres.2025.123176
16 INSTITUTION W H O, JAYNE S, ROEMMICH D, et al The Argo program: present and future[J]. Oceanography, 2017, 30 (2): 18- 28
doi: 10.5670/oceanog.2017.213
17 刘放. 摘箬山岛智能海洋观测网信息系统的设计与实现 [D]. 杭州: 浙江大学, 2016: 1–59.
LIU Fang. The design and implementation of Z2ERO smart ocean observatory information system [D]. Hangzhou: Zhejiang University, 2016: 1–59.
18 BARNES C R, BEST M M R, JOHNSON F R, et al Challenges, benefits, and opportunities in installing and operating cabled ocean observatories: perspectives from NEPTUNE Canada[J]. IEEE Journal of Oceanic Engineering, 2013, 38 (1): 144- 157
doi: 10.1109/JOE.2012.2212751
19 许惠平, 张艳伟, 徐昌伟, 等 东海海底观测小衢山试验站[J]. 科学通报, 2011, 56 (22): 1839- 1845
XU Huiping, ZHANG Yanwei, XU Changwei, et al Coastal seafloor observatory at Xiaoqushan in the East China Sea[J]. Chinese Science Bulletin, 2011, 56 (22): 1839- 1845
doi: 10.1360/csb2011-56-22-1839
20 PETITT R A, HARRIS D W, WOODING B, et al The Hawaii-2 observatory[J]. IEEE Journal of Oceanic Engineering, 2002, 27 (2): 245- 253
doi: 10.1109/JOE.2002.1002479
21 FAVALI P, BERANZOLI L, DE SANTIS A. Seafloor observatories: a new vision of the Earth from the Abyss [M]. Berlin: Springer, 2015: 676.
22 TURNER R A, SMITH K S Transformer inrush currents[J]. IEEE Industry Applications Magazine, 2010, 16 (5): 14- 19
doi: 10.1109/MIAS.2010.937440
23 陈鹰, 杨灿军, 陶春辉, 等. 海底观测系统 [M]. 北京: 海洋出版社, 2006.
24 LEVIN L A, LE BRIS N The deep ocean under climate change[J]. Science, 2015, 350 (6262): 766- 768
doi: 10.1126/science.aad0126
25 MARJO V, IAN C, ELVA E B, et al. Global open oceans and deep seabed (GOODS): biogeographic classification [S]. [S.l.]: UNESCO, 2009.
26 YOU Y Harnessing telecoms cables for science[J]. Nature, 2010, 466 (7307): 690- 691
doi: 10.1038/466690a
27 CHESNOY J, ANTONA J C. Undersea fiber communication systems [M]. Cambridge: [s.n.], 2015.
28 叶胤, 王超, 莫仁芸 海底光缆通信系统技术发展分析[J]. 广东通信技术, 2021, 41 (1): 19- 23
YE Yin, WANG Chao, MO Renyun Technical development analysis of submarine optical cable communication system[J]. Guangdong Communication Technology, 2021, 41 (1): 19- 23
29 KASAHARA J, UTADA H, SATO T, et al Submarine cable OBS using a retired submarine telecommunication cable: GeO-TOC program[J]. Physics of the Earth and Planetary Interiors, 1998, 108 (2): 113- 127
doi: 10.1016/S0031-9201(98)00090-9
30 HOWE B. Ocean observing using SMART subsea telecommunications cable systems [C]// AGU Fall Meeting 2015. San Francisco: AGU, 2015.
31 HOWE B M, ARBIC B K, AUCAN J, et al SMART cables for observing the global ocean: science and implementation[J]. Frontiers in Marine Science, 2019, 6: 424
doi: 10.3389/fmars.2019.00424
32 TILMANN F, HOWE B, BUTLER R, et al. Proposal for using commercial submarine telecommunications cables for monitoring earthquakes and tsunamis-the SMART cable concept [C]// EGU General Assembly 2017 Conference. Vienna: EGU, 2017: 14587.
33 SNOWDEN D, TSONTOS V M, HANDEGARD N O, et al Data interoperability between elements of the global ocean observing system[J]. Frontiers in Marine Science, 2019, 6: 442
doi: 10.3389/fmars.2019.00442
34 TANHUA T, APPELTANS W, BAX N, et al. GOOS, FOO and governance - assessments and strategies [J]. Frontiers in Marine Science, 2019: 1–35.
35 ROWE C, HOWE B, BEGNAUD M, et al. Science monitoring and reliable telecommunications (SMART) cables: the future of global undersea observing [C]// Proceedings of the IEEE Photonics Society Summer Topicals Meeting Series. Bridgetown: IEEE, 2024: 1–2.
36 MULLER-KARGER F E, MILOSLAVICH P, BAX N J, et al Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks[J]. Frontiers in Marine Science, 2018, 5: 211
doi: 10.3389/fmars.2018.00211
37 The Global Ocean Observing System. Essential ocean variables [EB/OL]. [2025–01–26]. https://goosocean.org/what-we-do/framework/essential-ocean-variables/.
38 RENNINGER-ROJAS K, TROSSMAN D, HOWE B, et al. Assessing the potential of SMART subsea cables for monitoring essential ocean variables [C]// 2024 Ocean Sciences Meeting. New Orleans: AGU, 2024.
39 JOHNSON G C Quantifying Antarctic bottom water and North Atlantic deep water volumes[J]. Journal of Geophysical Research: Oceans, 2008, 113 (C5): 2007JC004477
doi: 10.1029/2007JC004477
40 SMEED D A, JOSEY S A, BEAULIEU C, et al The North Atlantic Ocean is in a state of reduced overturning[J]. Geophysical Research Letters, 2018, 45 (3): 1527- 1533
doi: 10.1002/2017GL076350
41 JOHNSON G C, LYMAN J M, PURKEY S G Informing deep Argo array design using Argo and full-depth hydrographic section data[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32 (11): 2187- 2198
doi: 10.1175/JTECH-D-15-0139.1
42 MCCARTHY G D, SMEED D A, JOHNS W E, et al Measuring the Atlantic meridional overturning circulation at 26°N[J]. Progress in Oceanography, 2015, 130: 91- 111
doi: 10.1016/j.pocean.2014.10.006
43 SUSAN LOZIER M, BACON S, BOWER A S, et al Overturning in the subpolar north Atlantic program: a new international ocean observing system[J]. Bulletin of the American Meteorological Society, 2017, 98 (4): 737- 752
doi: 10.1175/BAMS-D-16-0057.1
44 MEINEN C S, GARZOLI S L, PEREZ R C, et al Characteristics and causes of Deep Western Boundary Current transport variability at 34.5°S during 2009–2014[J]. Ocean Science, 2017, 13 (1): 175- 194
doi: 10.5194/os-13-175-2017
45 TALLEY L D, FEELY R A, SLOYAN B M, et al Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography[J]. Annual Review of Marine Science, 2016, 8: 185- 215
doi: 10.1146/annurev-marine-052915-100829
46 ELIPOT S, FRAJKA-WILLIAMS E, HUGHES C W, et al The observed North Atlantic meridional overturning circulation: its meridional coherence and ocean bottom pressure[J]. Journal of Physical Oceanography, 2014, 44 (2): 517- 537
doi: 10.1175/JPO-D-13-026.1
47 HUGHES C W, ELIPOT S, MORALES MAQUEDA M Á, et al Test of a method for monitoring the geostrophic meridional overturning circulation using only boundary measurements[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30 (4): 789- 809
doi: 10.1175/JTECH-D-12-00149.1
48 HUGHES C W, WILLIAMS J, BLAKER A, et al A window on the deep ocean: the special value of ocean bottom pressure for monitoring the large-scale, deep-ocean circulation[J]. Progress in Oceanography, 2018, 161: 19- 46
doi: 10.1016/j.pocean.2018.01.011
49 MAKOWSKI J K, CHAMBERS D P, BONIN J A Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2015, 120 (6): 4245- 4259
doi: 10.1002/2014JC010575
50 CHAMBERS D P, SCHRÖTER J Measuring ocean mass variability from satellite gravimetry[J]. Journal of Geodynamics, 2011, 52 (5): 333- 343
doi: 10.1016/j.jog.2011.04.004
51 TAPLEY B D, BETTADPUR S, WATKINS M, et al The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31 (9): 2004GL019920
doi: 10.1029/2004GL019920
52 FLECHTNER F, NEUMAYER K H, DAHLE C, et al. What can be expected from the GRACE-FO laser ranging interferometer for earth science applications? [M]// CAZENAVE A, CHAMPOLLION N, BENVENISTE J, et al. Remote sensing and water resources. [S.l.]: Springer, 2016: 263–280.
53 MÜLLER M, ARBIC B K, MITROVICA J X Secular trends in ocean tides: observations and model results[J]. Journal of Geophysical Research: Oceans, 2011, 116 (C5): C05013
54 RAY R D Secular changes of the M2 tide in the Gulf of Maine[J]. Continental Shelf Research, 2006, 26 (3): 422- 427
doi: 10.1016/j.csr.2005.12.005
55 RAY R D Precise comparisons of bottom-pressure and altimetric ocean tides[J]. Journal of Geophysical Research: Oceans, 2013, 118 (9): 4570- 4584
doi: 10.1002/jgrc.20336
56 MÜLLER M, CHERNIAWSKY J Y, FOREMAN M G G, et al Seasonal variation of the M2 tide[J]. Ocean Dynamics, 2014, 64 (2): 159- 177
doi: 10.1007/s10236-013-0679-0
57 BERNARD E, TITOV V Evolution of tsunami warning systems and products[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373 (2053): 20140371
doi: 10.1098/rsta.2014.0371
58 SONG Y T, FUKUMORI I, SHUM C K, et al Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean[J]. Geophysical Research Letters, 2012, 39 (5): L05606
59 SALAREE A, HOWE B M, HUANG Y, et al A numerical study of SMART cables potential in marine hazard early warning for the Sumatra and Java regions[J]. Pure and Applied Geophysics, 2023, 180 (5): 1717- 1749
doi: 10.1007/s00024-022-03004-0
60 ANGOVE M, ARCAS D, BAILEY R, et al Ocean observations required to minimize uncertainty in global tsunami forecasts, warnings, and emergency response[J]. Frontiers in Marine Science, 2019, 6: 350
doi: 10.3389/fmars.2019.00350
61 PAROS J, BERNARD E, DELANEY J, et al. Breakthrough underwater technology holds promise for improved local tsunami warnings [C]// Proceedings of the IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. Tokyo: IEEE, 2011: 1–9.
62 KANAMORI H Mechanism of tsunami earthquakes[J]. Physics of the Earth and Planetary Interiors, 1972, 6 (5): 346- 359
doi: 10.1016/0031-9201(72)90058-1
63 TAPPIN D R, GRILLI S T, HARRIS J C, et al Did a submarine landslide contribute to the 2011 Tohoku tsunami?[J]. Marine Geology, 2014, 357: 344- 361
doi: 10.1016/j.margeo.2014.09.043
64 AMMON C J, JI C, THIO H K, et al Rupture process of the 2004 Sumatra-Andaman earthquake[J]. Science, 2005, 308 (5725): 1133- 1139
doi: 10.1126/science.1112260
65 KANAMORI H, RIVERA L Source inversion of W phase: speeding up seismic tsunami warning[J]. Geophysical Journal International, 2008, 175 (1): 222- 238
doi: 10.1111/j.1365-246X.2008.03887.x
66 DUPUTEL Z, RIVERA L, KANAMORI H, et al W phase source inversion for moderate to large earthquakes (1990–2010)[J]. Geophysical Journal International, 2012, 189 (2): 1125- 1147
doi: 10.1111/j.1365-246X.2012.05419.x
67 WEINSTEIN S, BECKER N, HOWE B, et al. Can SMART cables—a real-time, deep-ocean sensor network—improve tsunami-hazard assessment? Yes! [C]// AGU Fall Meeting 2019. San Francisco: AGU, 2019: NH33A-07.
68 RANASINGHE N, ROWE C, SYRACUSE E, et al Enhanced global seismic resolution using transoceanic SMART cables[J]. Seismological Research Letters, 2018, 89 (1): 77- 85
doi: 10.1785/0220170068
69 BEGNAUD M, ROWE C, CONLEY A, et al. Enhancing Global 3D seismic P-wave models by addition of OBS and SMART cables sensors [C]// AGU Fall Meeting 2023. San Francisco: AGU, 2023: S52A-08.
70 KENNETT B L N, ENGDAHL E R, BULAND R Constraints on seismic velocities in the Earth from traveltimes[J]. Geophysical Journal International, 1995, 122 (1): 108- 124
doi: 10.1111/j.1365-246X.1995.tb03540.x
71 AUCAN J, HOWE B. SMART cables sensing the pulse of the planet [C]// 2018 Ocean Sciences Meeting. Portland: AGU, 2018.
72 ITU. JTF funding study [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Documents/JTF%20Report%20Green%20Cable%20Funding%20Study.pdf.
73 ITU. JTF functional requirements [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Documents/Functional-requirements.
74 ITU. JTF wet demonstrator [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Documents/Wet-demonstrator.
75 ITU. JTF website [EB/OL]. (2015–08–01)[2025–02–20]. http://www.itu.int/en/ITUT/climatechange/task-force-sc/Pages/default.aspx.
76 HOWE B M, PANAYOTOU K. SMART submarine telecommunication cables to monitor global change and tsunamis in the global ocean [C]// 4th Underwater Acoustics Conference and Exhibition. Skiathos Island: [s.n.], 2017: 769–776.
77 MA B B, NYSTUEN J A, LIEN R C Prediction of underwater sound levels from rain and wind[J]. the Journal of the Acoustical Society of America, 2005, 117 (6): 3555- 3565
doi: 10.1121/1.1910283
78 YANG J, RISER S, NYSTUEN J, et al Regional rainfall measurements using the passive aquatic listener during the SPURS field campaign[J]. Oceanography, 2015, 28 (1): 124- 133
doi: 10.5670/oceanog.2015.10
79 MELLINGER D, STAFFORD K, MOORE S, et al An overview of fixed passive acoustic observation methods for cetaceans[J]. Oceanography, 2007, 20 (4): 36- 45
doi: 10.5670/oceanog.2007.03
80 GONZALEZ-HERRAEZ M, FERNANDEZ-RUIZ M R, MAGALHAES R, et al. Distributed acoustic sensing for seismic monitoring [C]// Proceedings of the Optical Fiber Communications Conference and Exhibition. San Francisco: IEEE, 2021: 1–3.
81 WILLIAMS E F, FERNÁNDEZ-RUIZ M R, MAGALHAES R, et al Distributed sensing of microseisms and teleseisms with submarine dark fibers[J]. Nature Communications, 2019, 10: 5778
doi: 10.1038/s41467-019-13262-7
82 HOWE B SMART submarine cable technology can facilitate acoustics on the global scale[J]. The Journal of the Acoustical Society of America, 2023, 154 (Suppl.4): A176
83 张若愚, 袁伟杰, 崔原豪, 等 面向6G的大规模MIMO通信感知一体化: 现状与展望[J]. 移动通信, 2022, 46 (6): 17- 23
ZHANG Ruoyu, YUAN Weijie, CUI Yuanhao, et al Integrated sensing and communications with massive MIMO for 6G: status and prospect[J]. Mobile Communications, 2022, 46 (6): 17- 23
84 ZHOU W, ZHANG R, CHEN G, et al Integrated sensing and communication waveform design: a survey[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1930- 1949
doi: 10.1109/OJCOMS.2022.3215683
85 任红, 张若愚, 缪晨, 等 面向智慧海洋的MIMO探测通信一体化波束成形设计[J]. 数字海洋与水下攻防, 2023, 6 (6): 648- 655
REN Hong, ZHANG Ruoyu, MIAO Chen, et al Beamforming design of MIMO integrated detection and communication for smart ocean[J]. Digital Ocean and Underwater Warfare, 2023, 6 (6): 648- 655
86 HOWE B M, SAGEN H New developments in submarine cable technology can facilitate acoustics in Polar regions and on the global scale[J]. The Journal of the Acoustical Society of America, 2022, 152 (Suppl.4): A73
87 LENTZ S, HOWE B. Scientific monitoring and reliable telecommunications (SMART) cable systems: integration of sensors into telecommunications repeaters [C]// Proceedings of the OCEANS - MTS/IEEE Kobe Techno-Oceans. Kobe: IEEE, 2018: 1–7.
88 MATSUMOTO H, AARAKI E, KAWAGUCHI K Experimental evaluation of initial characteristics of DONET pressure sensors[J]. Marine Technology Society Journal, 2018, 52 (3): 109- 119
doi: 10.4031/MTSJ.52.3.3
89 WILCOCK W, MANALANG D, HARRINGTON M, et al. A Seafloor test of the A-0-A approach to calibrating pressure sensors for vertical geodesy [C]// AGU Fall Meeting 2017. New Orleans: AGU, 2017.
90 FOUCH M, HOWE B, LENTZ S. SMART (sensor monitoring and reliable telecommunications) repeaters: sensor-enabled submarine fiber optic repeaters for multi-scale and multi-use monitoring and observing [C]// Ocean Visions Summit 2021. [S.l.]: AGU, 2021.
91 PAPAPAVLOU C, PAXIMADIS K, UZUNIDIS D, et al Toward SDM-based submarine optical networks: a review of their evolution and upcoming trends[J]. Telecom, 2022, 3 (2): 234- 280
doi: 10.3390/telecom3020015
92 COLAS F, PERHIRIN S, AUDO F, et al. Power and data over fiber for sea-floor observatories [C]// Suboptic 2016. Dubai: HAL, 2016.
93 FOUCH M, LENTZ S, HOWE B, et al. SMART cables: integration of environmental sensors into submarine telecommunications cables for improved ocean monitoring [C]// EGU General Assembly 2022 Conference. Vienna: EGU, 2022.
94 许人东, 黄豪彩, 胥国祥, 等. 一种可快速更换扩展的海底监测用海底光缆分支器: CN115201983A [P]. 2022–10–18.
95 许人东, 黄豪彩, 胥国祥, 等. 一种模块化可用于监测和通信的海缆分支器: CN115201984B [P]. 2023–12–29.
96 IRRGANG C, WEBER T, THOMAS M. Assimilation of SMART cable observations to improve global ocean models [C]// AGU Fall Meeting 2018. Washington, D. C. : AGU, 2018.
97 RENNINGER-ROJAS K, TROSSMAN D, HARRISON C, et al. Assessing the potential of SMART subsea cables for advanced ocean monitoring [C]// Proceedings of the OCEANS 2024 - Singapore. Singapore: IEEE, 2024: 1–11.
98 DE SANTIS A, CHIAPPINI M, MARINARO G, et al InSEA project: initiatives in supporting the consolidation and enhancement of the EMSO infrastructure and related activities[J]. Frontiers in Marine Science, 2022, 9: 846701
doi: 10.3389/fmars.2022.846701
99 MARINARO G, HOWE B, LENTZ S, et al. Sensor enabled scientific monitoring and reliable telecommunications (SMART) cable wet demonstrator project at EMSO Western Ionian Sea facility [C]// AGU Fall Meeting 2019. San Francisco: AGU, 2019.
100 GROSSMAN J, KONG L, HOWE B, et al. Use of SMART subsea cables for faster earthquake and tsunami wave detection: Vanuatu-New Caledonia [C]// AGU Fall Meeting 2022. Chicago: AGU, 2022.
101 TILMANN F, HOWE B, BUTLER R, et al. SMART submarine cable applications in earthquake and tsunami science and early warning [R]. Potsdam: [s.n.], 2017.
102 NEFF P, ANDREASEN J, ROOP H, et al. Antarctic subsea cable workshop report: high-speed connectivity needs to advance US Antarctic science [R]. Saint Paul: [s.n.], 2021.
103 ROWE C A, HOWE B M, FOUCH M J, et al SMART cables observing the oceans and earth[J]. Marine Technology Society Journal, 2022, 56 (5): 13- 25
doi: 10.4031/MTSJ.56.5.3
104 DAÑOBEITIA J, SORRIBAS J, PIRENNE B, et al. Ocean observing systems combining SMART cables with seafloor observatories [C]// AGU Fall Meeting 2024. Washington, D. C: [s.n.], 2024.
105 PIRENNE B, MORAN K, HOWE B. Real-time, year-round, cross-Arctic observations integrating three complementary technologies into submarine telecommunication cables [C]// Proceedings of the OCEANS 2024. Halifax: IEEE, 2024: 1–4.
106 THIELE T. Blue infrastructure finance: a new approach, integrating nature-based solutions for coastal resilience [R]. [S.l.]: IUCN, 2020.
107 HOWE B M, ANGOVE M, AUCAN J, et al SMART subsea cables for observing the Earth and ocean, mitigating environmental hazards, and supporting the blue economy[J]. Frontiers in Earth Science, 2022, 9: 775544
doi: 10.3389/feart.2021.775544
108 HOWE B M, BUTLER R, JOINT TASK FORCE U. Emerging subsea networks: SMART cable systems for science and society [C]// 2016 Ocean Sciences Meeting. New Orleans: AGU, 2016.
109 HOWE B, TILMANN F, HEIMBACH P, et al. Ocean and earth observations with SMART subsea cables supporting the united nations decade of ocean science for sustainable development [C]// 28th General Assembly of the International Union of Geodesy and Geophysics 2023. Berlin: [s.n.], 2023.
110 TANHUA T, POULIQUEN S, HAUSMAN J, et al Ocean FAIR data services[J]. Frontiers in Marine Science, 2019, 6: 440
doi: 10.3389/fmars.2019.00440
111 STROLLO A, CAMBAZ D, CLINTON J, et al EIDA: the European integrated data archive and service infrastructure within ORFEUS[J]. Seismological Research Letters, 2021, 92 (3): 1788- 1795
doi: 10.1785/0220200413
112 KONG L, HOWE B. SMART subsea cables for observing the ocean and earth: update for ocean decade tsunami programme [C]// AGU Fall Meeting 2021. New Orleans: AGU, 2021.
113 ROWE C, HOWE B, ANGOVE M, et al. An Update on the SMART cables initiative for observing the ocean and earth [C]// AGU Fall Meeting 2022. Chicago: AGU, 2022.
[1] 李奇骏,姚炎明,焦建格,袁金雄,赵新宇. 悬沙矿物组分对盐度测量的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1858-1866.
[2] 孙志林, 卢美, 聂会, 黄森军. 浙江沿海登陆台风风暴潮特性分析[J]. J4, 2014, 48(2): 262-267.
[3] 谢东风, 潘存鸿, 鲁海燕, 王立辉, 唐子文. 钱塘江河口涌潮传播速度研究[J]. J4, 2012, 46(6): 1128-1134.
[4] 曾剑, 孙志林, 潘存鸿, 陈刚. 钱塘江河口径流长周期特性及其对河床的影响[J]. J4, 2010, 44(8): 1584-1588.