Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (12): 2539-2544    DOI: 10.3785/j.issn.1008-973X.2025.12.008
计算机技术     
非对称结构的高光谱与激光雷达图像分类模型
李明婉(),房胜*(),李哲
山东科技大学 计算机科学与工程学院,山东 青岛 266590
Asymmetric structure based hyperspectral and LiDAR image classification model
Mingwan LI(),Sheng FANG*(),Zhe LI
College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
 全文: PDF(2853 KB)   HTML
摘要:

针对高光谱图像与激光雷达图像联合分类任务中模态差异显著、信息结构异质的问题,提出非对称双分支建模方法,分别适配主导模态与辅助模态的特征提取需求. 在高光谱分支中,构建融合视觉transformer与卷积神经网络的串联结构,引入中心聚焦的Mamba模块,通过螺旋路径建模上下文增强对中心区域的感知能力,同时结合空间-光谱维度的细粒度优化模块提升特征表达质量. 在激光雷达分支中,采用轻量卷积结构提取结构与高程信息,减少冗余建模并保持尺度对齐. 实验在3个典型遥感数据集上进行,所提方法在整体精度、平均精度与一致性系数等评价指标上均优于现有方法,表现出较强的鲁棒性与泛化能力. 结果表明,差异化建模与区域感知增强机制的协同设计,可显著提升多模态遥感图像分类性能.

关键词: 多模态遥感图像分类非对称策略高光谱图像激光雷达图像MambaViT-CNN 框架    
Abstract:

An asymmetric dual-branch modeling method was proposed to address the modality discrepancy and heterogeneous information structures in the joint classification of hyperspectral and LiDAR images. Separate feature extractors were designed for the dominant and auxiliary modalities. In the hyperspectral branch, a serial structure combining a vision transformer and a convolutional neural network was constructed. A central-focus Mamba module was introduced to enhance perception of central regions through modeling context via spiral paths. A spatial-spectral refinement module was applied to improve feature expression quality via fine-grained optimization. In the LiDAR branch, a lightweight convolutional structure was used to extract structural and elevation information, reducing redundant modeling while maintaining scale alignment. Experiments were conducted on three benchmark remote sensing datasets. Superior performance was achieved in terms of overall accuracy, average accuracy, and Kappa coefficient, demonstrating strong robustness and generalization ability. Results show that classification performance is significantly improved by the coordinated design of modality-specific modeling and region-aware enhancement mechanisms.

Key words: multimodal remote sensing image classification    asymmetric strategy    hyperspectral image    LiDAR image    Mamba    ViT-CNN framework
收稿日期: 2025-07-15 出版日期: 2025-11-25
CLC:  TP 751.1  
基金资助: 山东省自然科学基金资助项目(ZR2024MF113,ZR2022MF325).
通讯作者: 房胜     E-mail: limingwanwan@163.com;fangsheng@tsinghua.org.cn
作者简介: 李明婉(2001—),女,硕士生,从事遥感识别与处理研究. orcid.org/0009-0008-7984-8763. E-mail:limingwanwan@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李明婉
房胜
李哲

引用本文:

李明婉,房胜,李哲. 非对称结构的高光谱与激光雷达图像分类模型[J]. 浙江大学学报(工学版), 2025, 59(12): 2539-2544.

Mingwan LI,Sheng FANG,Zhe LI. Asymmetric structure based hyperspectral and LiDAR image classification model. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2539-2544.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.008        https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2539

图 1  基于非对称结构的整体框架(高光谱模态采用ViT-CNN结构建模)
图 2  CNN-ViT结构与ViT-CNN结构对比
图 3  HSI分支(第i层)中ViT-CNN结构的具体实现
图 4  CFSS结构和SSS具体过程示意图
数据集图像尺寸HSI波段数空间分辨率
Houston2013$ 349\times 1\;905 $1442.5 m
Augsburg$ 332\times 485 $18030 m
MUUFL$ 325\times 220 $640.54 m$\times $1.0 m
表 1  实验数据集概览
模型结构模型名称Houston2013MUUFLAugsburg
OA/%AA/%Kappa/%OA/%AA/%Kappa/%OA/%AA/%Kappa/%
CNNENDNet88.0587.8687.0780.7580.3375.2465.8354.1455.14
HybridSN86.2287.4085.1762.4658.3654.2558.7353.8546.63
S2ENet94.5995.4094.1679.2379.7273.5774.7566.2066.14
ViTSpectralFormer69.3370.6666.8976.3476.1269.9439.7653.0928.94
MFT92.3193.4291.7073.0473.4666.5371.5465.8162.61
CNN-ViTS2EFT86.9486.3085.8279.1975.1373.0762.5757.1949.63
HCTNet94.7295.6894.3074.5273.4267.9373.9466.6465.29
MHST94.2295.1893.7576.8577.2570.7166.5466.5556.95
ViT-CNN本研究方法97.6097.9797.4183.9584.8379.4775.4767.9767.18
表 2  3个数据集上不同方法的定量对比分析
图 5  Houston2013数据集上不同方法生成的分类图
HSI分支LiDAR分支OA/%AA/%Kappa/%
ViT-CNNViT-CNN96.5697.1996.29
CNNViT-CNN95.8596.6495.51
ViT-CNNCNN97.6097.9797.41
表 3  非对称策略消融实验
HSI分支架构OA/%AA/%Kappa/%
先CNN后ViT93.3694.4392.82
CNN与ViT并行95.7596.4495.41
先ViT后CNN97.6097.9797.41
表 4  HSI分支架构(ViT-CNN架构)消融实验
CFMambaSSRMOA/%AA /%Kappa /%
空间分支光谱分支
×95.3596.1794.98
××94.5195.4194.08
×97.0297.5696.78
×96.0996.7895.78
97.6097.9797.41
表 5  CFMamba与SSRM模块消融实验
1 HONG D, GAO L, YOKOYA N, et al More diverse means better: multimodal deep learning meets remote-sensing imagery classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (5): 4340- 4354
doi: 10.1109/TGRS.2020.3016820
2 HUANG J, ZHANG Y, YANG F, et al Attention-guided fusion and classification for hyperspectral and LiDAR data[J]. Remote Sensing, 2024, 16 (1): 94
3 LI H, GHAMISI P, SOERGEL U, et al Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks[J]. Remote Sensing, 2018, 10 (10): 1649
doi: 10.3390/rs10101649
4 HONG D, GAO L, HANG R, et al Deep encoder-decoder networks for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 5500205
5 FENG Y, ZHU J, SONG R, et al S2EFT: spectral-spatial-elevation fusion transformer for hyperspectral image and LiDAR classification[J]. Knowledge-Based Systems, 2024, 283: 111190
doi: 10.1016/j.knosys.2023.111190
6 ZHANG Y, XU S, HONG D, et al Multimodal transformer network for hyperspectral and LiDAR classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5514317
7 ZHAO G, YE Q, SUN L, et al Joint classification of hyperspectral and LiDAR data using a hierarchical CNN and transformer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 61: 5500716
8 XUE Z, TAN X, YU X, et al Deep hierarchical vision transformer for hyperspectral and LiDAR data classification[J]. IEEE Transactions on Image Processing, 2022, 31: 3095- 3110
doi: 10.1109/TIP.2022.3162964
9 NI K, WANG D, ZHENG Z, et al MHST: multiscale head selection transformer for hyperspectral and LiDAR classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 5470- 5483
doi: 10.1109/JSTARS.2024.3366614
11 SONG R, FENG Y, CHENG W, et al BS2T: bottleneck spatial–spectral transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5532117
12 JIA S, WANG Y, JIANG S, et al A center-masked transformer for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5510416
13 ZHAO S, CHEN H, ZHANG X, et al RS-mamba for large remote sensing image dense prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5633314
14 FANG S, LI K, LI Z S2ENet: spatial–spectral cross-modal enhancement network for classification of hyperspectral and LiDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 6504205
15 GU A, DAO T. Mamba: Linear-time sequence modeling with selective state spaces [EB/OL]. (2024-05-31)[2025-7-11]. https://arxiv.org/abs/2312.00752.
16 WANG X, ZHU J, FENG Y, et al MS2CANet: multiscale spatial–spectral cross-modal attention network for hyperspectral image and LiDAR classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5501505
17 GADER P, ZARE A, CLOSE R, et al. MUUFL Gulfport hyperspectral and LiDAR airborne data set: REP-2013-570 [R]. Gainesville, FL: University of Florida, 2013.
18 DU X, ZARE A. Technical report: scene label ground truth map for MUUFL gulfport data set [EB/OL]. (2017-04-17)[2025-07-15]. http://ufdc.ufl.edu/IR00009711/00001.
19 ROY S K, KRISHNA G, DUBEY S R, et al HybridSN: exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17 (2): 277- 281
doi: 10.1109/LGRS.2019.2918719
20 HONG D, HAN Z, YAO J, et al SpectralFormer: rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5518615
[1] 赵辽英, 陈小芬, 厉小润. 变化向量分析结合光谱解混的高光谱变化检测[J]. 浙江大学学报(工学版), 2017, 51(10): 1912-1919.
[2] 厉小润, 朱洁尔, 王晶, 赵辽英. 组合核支持向量机高光谱图像分类[J]. J4, 2013, 47(8): 1403-1410.
[3] 姚伏天, 钱沄涛, 李吉明. 空间约束半监督高斯过程下的高光谱图像分类[J]. J4, 2012, 46(7): 1295-1300.