计算机技术 |
|
|
|
|
基于上下文信息融合与动态采样的主板缺陷检测方法 |
鞠文博( ),董华军*( ) |
大连交通大学 机械工程学院,辽宁 大连 116000 |
|
Motherboard defect detection method based on context information fusion and dynamic sampling |
Wenbo JU( ),Huajun DONG*( ) |
School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116000, China |
1 |
王健, 肖迪, 冯李航, 等. 基于改进YOLOv8s的PCB小目标缺陷检测模型 [EB/OL]. (2024-08-20)[2024-10-23]. https://kns.cnki.net/kcms/detail/11.2127.tp.20240819.1152.016.html.
|
2 |
闫涵, 卢伟, 吴玉虎 基于轻量化卷积神经网络的金属断口图像识别[J]. 控制与决策, 2024, 39 (9): 2858- 2866 YAN Han, LU Wei, WU Yuhu Metal fracture recognition based on lightweight convolutional neural network[J]. Control and Decision, 2024, 39 (9): 2858- 2866
|
3 |
LEI J, HU X, WANG Y, et al. PyramidFlow: high-resolution defect contrastive localization using pyramid normalizing flow [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 14143–14152.
|
4 |
KAPOOR S, CANTRELL E M, PENG K, et al REFORMS: consensus-based recommendations for machine-learning-based science[J]. Science Advances, 2024, 10 (18): eadk3452
|
5 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580–587.
|
6 |
UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104 (2): 154- 171
|
7 |
CHEN C, WANG S, HUANG S An improved faster RCNN-based weld ultrasonic atlas defect detection method[J]. Measurement and Control, 2023, 56 (3/4): 832- 843
|
8 |
YE Q, DONG Y, ZHANG X, et al Robustness defect detection: improving the performance of surface defect detection in interference environment[J]. Optics and Lasers in Engineering, 2024, 175: 108035
doi: 10.1016/j.optlaseng.2024.108035
|
9 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
|
10 |
LI Y, SONG L, CAI Y, et al Research on fabric surface defect detection algorithm based on improved Yolo-v4[J]. Scientific Reports, 2024, 14: 5537
|
11 |
HOU C, LI Z, SHEN X, et al Real-time defect detection method based on YOLO-GSS at the edge end of a transmission line[J]. IET Image Processing, 2024, 18 (5): 1315- 1327
|
12 |
CHEN F, DENG M, GAO H, et al NHD-YOLO: improved YOLOv8 using optimized neck and head for product surface defect detection with data augmentation[J]. IET Image Processing, 2024, 18 (7): 1915- 1926
doi: 10.1049/ipr2.13073
|
13 |
XIE W, SUN X, MA W A light weight multi-scale feature fusion steel surface defect detection model based on YOLOv8[J]. Measurement Science and Technology, 2024, 35 (5): 055017
doi: 10.1088/1361-6501/ad296d
|
14 |
YI F, ZHANG H, YANG J, et al YOLOv7-SiamFF: industrial defect detection algorithm based on improved YOLOv7[J]. Computers and Electrical Engineering, 2024, 114: 109090
doi: 10.1016/j.compeleceng.2024.109090
|
15 |
SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects [C]// Joint European conference on machine learning and knowledge discovery in databases. Cham: Springer, 2022: 443–459.
|
16 |
苟倩文, 董云卫, 李泳民 基于深度学习的程序合成研究进展[J]. 计算机学报, 2024, 47 (11): 2594- 2628 GOU Qianwen, DONG Yunwei, LI Yongmin Advances in deep learning-based program synthesis[J]. Chinese Journal of Computers, 2024, 47 (11): 2594- 2628
doi: 10.11897/SP.J.1016.2024.02594
|
17 |
WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information [C]// European Conference on Computer Vision. Cham: Springer 2024: 1−21.
|
18 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1800–1807.
|
19 |
CAO J, LI Y, SUN M, et al DO-conv: depthwise over-parameterized convolutional layer[J]. IEEE Transactions on Image Processing, 2022, 31: 3726- 3736
doi: 10.1109/TIP.2022.3175432
|
20 |
HUA B S, TRAN M K, YEUNG S K. Pointwise convolutional neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 984–993.
|
21 |
张宝杰, 麻宸伟, 贾震, 等 基于卷积神经网络的牵引电机定子绕组匝间短路故障诊断[J]. 铁道学报, 2024, 46 (4): 73- 79 ZHANG Baojie, MA Chenwei, JIA Zhen, et al Fault diagnosis of stator winding inter-turn short circuit in traction motors based on convolutional neural network[J]. Journal of the China Railway Society, 2024, 46 (4): 73- 79
doi: 10.3969/j.issn.1001-8360.2024.04.008
|
22 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [EB/OL]. (2015-11-23)[2024-03-09]. https://arxiv.org/abs/1511.07122.
|
23 |
李岩超, 史卫亚, 冯灿 面向无人机航拍小目标检测的轻量级YOLOv8检测算法[J]. 计算机工程与应用, 2024, 60 (17): 167- 178 LI Yanchao, SHI Weiya, FENG Can Lightweight YOLOv8 detection algorithm for small object detection in UAV aerial photography[J]. Computer Engineering and Applications, 2024, 60 (17): 167- 178
|
24 |
伍麟, 郝鸿宇, 宋友 基于计算机视觉的工业金属表面缺陷检测综述[J]. 自动化学报, 2024, 50 (7): 1261- 1283 WU Lin, HAO Hongyu, SONG You A review of metal surface defect detection based on computer vision[J]. Acta Automatica Sinica, 2024, 50 (7): 1261- 1283
|
25 |
陈鸿坤, 罗会兰 多尺度语义信息融合的目标检测[J]. 电子与信息学报, 2021, 43 (7): 2087- 2095 CHEN Hongkun, LUO Huilan Multi-scale semantic information fusion for object detection[J]. Journal of Electronics and Information Technology, 2021, 43 (7): 2087- 2095
doi: 10.11999/JEIT200147
|
26 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
27 |
CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154–6162.
|
28 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// Computer Vision–ECCV 2016: 14th European Conference. Cham: Springer, 2016: 21–37.
|
29 |
WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464–7475.
|
30 |
REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8 [EB/OL]. (2023-05-17)[2024-03-09]. https://arxiv.org/abs/2305.09972.
|
31 |
LV X, DUAN F, JIANG J J, et al Deep metallic surface defect detection: the new benchmark and detection network[J]. Sensors, 2020, 20 (6): 1562
doi: 10.3390/s20061562
|
32 |
LI Y, CHEN Y, WANG N, et al. Scale-aware trident networks for object detection [C]// IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6054–6063.
|
33 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999–3007.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|