Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1148-1158    DOI: 10.3785/j.issn.1008-973X.2025.06.006
计算机技术     
基于改进CycleGAN的多失真类型水下图像增强
吕振鸣1(),董绍江1,*(),夏宗佑2,牟小燕3,王明权4
1. 重庆交通大学 机电与车辆工程学院,重庆 400074
2. 重庆交通大学 交通运输学院,重庆 400074
3. 重庆工业职业技术学院 机械工程学院,重庆 402260
4. 重庆市勘测院,重庆 400020
Multi-distortion type underwater image enhancement based on improved CycleGAN
Zhenming LV1(),Shaojiang DONG1,*(),Zongyou XIA2,Xiaoyan MOU3,Mingquan WANG4
1. School of Mechantronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2. College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China
3. School of Mechanical Engineering, Chongqing Vocational and Technical College of Industry, Chongqing 402260, China
4. Chongqing Survey Institute, Chongqing 400020, China
 全文: PDF(4587 KB)   HTML
摘要:

针对由散射、吸收和色偏等多种因素导致的水下图像模糊、对比度低、图像失真辨识困难的问题,提出基于改进CycleGAN的多失真类型水下图像增强算法. 为了提高图像增强效果,在CycleGAN的生成器中采用Auto-Encoder+Skip-connection的网络结构,添加全局色彩校正结构,从像素方面以及颜色方面进行全局增强,从而更好地捕捉水下图像中的色彩信息. 设计多维感知判别器来学习图像的全局特征和局部特征,此设计更加注重图像局部细节部分,有效针对散斑和色彩噪声,从多维空间上感知图像,提取特征能力更强,从而能提高图像判别的精度. 在EUVP、UIEB和U45数据集上的实验结果表明,所提出的方法取得了较好的结果,相较其他算法,在处理多种水下失真类型的图像方面,该算法的SSIM指标平均比第2名高出1.57%、PSNR指标高出1.836%、UIQM指标高出1.324%、UCIQE指标高出1.086%,在处理颜色和噪声细节方面表现出色.

关键词: 图像增强CycleGAN全局色彩校正结构多维感知判别器多种失真    
Abstract:

A multi-distortion type underwater image enhancement algorithm based on improved CycleGAN was proposed, aiming at the difficulties of underwater image blurring, low contrast and image distortion recognition caused by various factors such as scattering, absorption and color deviation. Firstly, in order to improve the image enhancement effect, Auto-Encoder+Skip-connection network structure was used in the generator of CycleGAN, and global color correction structure was added for global enhancement in terms of pixel as well as color, so as to better capture the color information in underwater images. Secondly, a multidimensional perceptual discriminator was designed to learn the global and local features of the image. This discriminator payed more attention to the local details of the image, effectively targeted scattering and color noise, perceived the image from a multidimensional space, and had a stronger ability to extract the features, thereby enhancing the accuracy of image discrimination. Finally, the experimental results on EUVP, UIEB and U45 datasets showed that the proposed method achieved better results, compared with other algorithms. In processing multi-distortion types of underwater images, the algorithm’s SSIM indicator was higher than that of the second place by an average of 1.57%, the PSNR indicator was higher by 1.836%, the UIQM indicator was higher by 1.324%, and the UCIQE indicator was higher by 1.086%. The proposed method performed well in processing color and noise details.

Key words: image enhancement    CycleGAN    global color correction structure    multidimensional perceptual discriminator    multiple distortion
收稿日期: 2024-04-08 出版日期: 2025-05-30
CLC:  TP 391.41  
基金资助: 重庆市教委科学技术研究资助项目(KJQN202203207);重庆市科技创新领军人才支持计划资助项目(CSTCCCXLJRC201920);重庆市高校创新研究群体(CXQT20019).
通讯作者: 董绍江     E-mail: 13946501711@163.com;dongshaojiang100@163.com
作者简介: 吕振鸣(2000—),男,硕士生,从事水下机器人研究. orcid.org/0009-0009-3520-7523. E-mail:13946501711@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吕振鸣
董绍江
夏宗佑
牟小燕
王明权

引用本文:

吕振鸣,董绍江,夏宗佑,牟小燕,王明权. 基于改进CycleGAN的多失真类型水下图像增强[J]. 浙江大学学报(工学版), 2025, 59(6): 1148-1158.

Zhenming LV,Shaojiang DONG,Zongyou XIA,Xiaoyan MOU,Mingquan WANG. Multi-distortion type underwater image enhancement based on improved CycleGAN. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1148-1158.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.006        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1148

图 1  面向多失真类型水下图像的网络总体结构
图 2  水下图像增强网络生成器模型结构
图 3  挤压和注意模块
图 4  生成器颈部的自注意力模块
图 5  水下图像增强网络判别器模型结构
图 6  黄色、有雾、绿色水下图像增强方法的视觉比较(局部差异放大表示)
图 7  蓝色、彩色水下图像增强方法的视觉比较(局部差异放大表示)
图 8  各种水下图像增强方法在U45数据集上的视觉比较(局部差异放大表示)
算法PSNRSSIMUIQMUCIQE
CLAHE19.62140.75572.89640.3396
UDCP18.36160.77582.77840.3782
Retinex12.63850.68692.46480.3629
IBLA20.80860.80533.29230.4408
CycleGAN17.93020.74313.48950.4025
FUnIE-GAN19.41920.81633.24580.4496
LANet18.63440.82553.29920.4507
SCEIR22.93610.84823.49460.4673
MGCycleGAN23.19570.86233.59610.4728
表 1  几种算法在EUVP和UIEB中黄色失真图像上的定量评估结果
算法PSNRSSIMUIQMUCIQE
CLAHE18.18370.74872.77320.3827
UDCP17.06650.77162.69270.3756
Retinex20.46680.80932.67930.3958
IBLA16.71030.72723.47140.4026
CycleGAN19.51130.74313.35230.4388
FUnIE-GAN16.58190.66023.25760.4182
LANet22.01190.85493.55310.4494
SCEIR23.22340.85293.58020.4473
MGCycleGAN24.16700.87633.63010.4562
表 2  几种算法在EUVP和UIEB中有雾失真图像上的定量评估结果
算法PSNRSSIMUIQMUCIQE
CLAHE14.82430.68682.95430.3337
UDCP14.77490.69272.88360.3779
Retinex16.73800.75653.14480.3863
IBLA19.54720.79503.29230.4309
CycleGAN21.40920.81993.35960.4313
FUnIE-GAN22.54180.80223.31460.4647
LANet24.69790.84273.77550.4809
SCEIR23.16370.83993.49210.4679
MGCycleGAN24.63340.84813.72080.4746
表 3  几种算法在EUVP和UIEB中蓝色失真图像上的定量评估结果
算法PSNRSSIMUIQMUCIQE
CLAHE14.77150.65052.67810.3885
UDCP16.00210.70732.81020.3936
Retinex13.69090.60892.54340.3232
IBLA20.68960.81203.28440.4105
CycleGAN19.80910.77453.32730.4468
FUnIE-GAN17.27220.79163.30720.4263
LANet24.55780.82523.53050.4524
SCEIR24.74370.83403.44960.4639
MGCycleGAN25.00560.83973.59310.4676
表 4  几种算法在EUVP和UIEB中彩色失真图像上的定量评估结果
算法PSNRSSIMUIQMUCIQE
CLAHE13.62560.72012.86580.3456
UDCP18.87710.79243.04880.3817
Retinex12.74040.67432.51650.3249
IBLA20.07390.80973.39610.4194
CycleGAN22.27570.81363.34330.4291
FUnIE-GAN22.19530.82203.36510.4226
LANet23.53960.84043.58890.4446
SCEIR24.16190.84283.53580.4568
MGCycleGAN24.66530.85943.61930.4774
表 5  几种算法在EUVP和UIEB中绿色失真图像上的定量评估结果
算法PSNRSSIMUIQMUCIQE
CLAHE16.86930.68772.69460.3805
UDCP14.47940.72312.96530.3694
Retinex13.24490.64442.89030.3594
IBLA18.19020.77782.84920.4025
CycleGAN21.10150.80833.21030.4188
FUnIE-GAN20.53270.78183.29460.4245
LANet22.61460.81933.36350.4454
SCEIR23.56010.82313.37030.4429
MGCycleGAN23.73360.82493.41670.4586
表 6  几种算法在U45数据集上的定量评估结果
图 9  消融实验的视觉比较(局部差异放大表示)
消融实验PSNRSSIMUIQMUCIQE
w/o color correction block22.36970.81533.16220.4463
w/o MP discriminator22.83900.80973.20180.4467
MGCycleGAN23.19570.83233.59660.4528
表 7  消融实验的定量评估
消融实验PSNRSSIMUIQMUCIQE
w/o ${L_{\rm{GAN}}}$18.83230.73432.84360.3734
w/o SSIM Loss21.68620.78582.98320.4445
MGCycleGAN23.19570.83233.59660.4528
表 8  损失函数消融实验的定量评估
1 WHITCOMB L, YOERGER D R, SINGH H, et al. Advances in underwater robot vehicles for deep ocean exploration: navigation, control, and survey operations [C]// Robotics Research: the 9th International Symposium. London: Springer, 2000: 439−448.
2 LI X, HOU G, TAN L, et al A hybrid framework for underwater image enhancement[J]. IEEE Access, 2020, 8: 197448- 197462
doi: 10.1109/ACCESS.2020.3034275
3 FU X, ZHUANG P, HUANG Y, et al. A retinex-based enhancing approach for single underwater image [C]// IEEE International Conference on Image Processing. Paris: IEEE, 2014: 4572–4576.
4 PAN P, YUAN F, CHENG E Underwater image de-scattering and enhancing using dehazenet and HWD[J]. Journal of Marine Science and Technology, 2018, 26 (4): 6
5 SHEN L, REDA M, ZHANG X, et al Polarization-driven solution for mitigating scattering and uneven illumination in underwater imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4202615
6 MENG H, YAN Y, CAI C, et al A hybrid algorithm for underwater image restoration based on color correction and image sharpening[J]. Multimedia Systems, 2022, 28 (6): 1975- 1985
doi: 10.1007/s00530-020-00693-2
7 PEREZ J, ATTANASIO A C, NECHYPORENKO N, et al. A deep learning approach for underwater image enhancement [C]// Biomedical Applications Based on Natural and Artificial Computing. Cham: Springer International Publishing, 2017: 183–192.
8 WEI D, XIE H, ZHANG Z, et al Learning a Holistic-Specific color transformer with Couple Contrastive constraints for underwater image enhancement and beyond[J]. Journal of Visual Communication and Image Representation, 2024, 98: 104059
doi: 10.1016/j.jvcir.2024.104059
9 ZHANG T, LIU Y MTUW-GAN: a multi-teacher knowledge distillation generative adversarial network for underwater image enhancement[J]. Applied Sciences, 2024, 14 (2): 529
doi: 10.3390/app14020529
10 ANWAR S, LI C, PORIKLI F, et al. Deep underwater image enhancement [EB/OL]. [2024-03-02]. https://arxiv.org/abs/1807.03528v1.
11 LIANG D, CHU J, CUI Y, et al NPT-UL: an underwater image enhancement framework based on nonphysical transformation and unsupervised learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5608819
12 LIU Q, ZHANG Q, LIU W, et al WSDS-GAN: a weak-strong dual supervised learning method for underwater image enhancement[J]. Pattern Recognition, 2023, 143: 109774
doi: 10.1016/j.patcog.2023.109774
13 PARK J, HAN D K, KO H Adaptive weighted multi-discriminator CycleGAN for underwater image enhancement[J]. Journal of Marine Science and Engineering, 2019, 7 (7): 200
doi: 10.3390/jmse7070200
14 WANG H, ZHANG W, BAI L, et al Metalantis: a comprehensive underwater image enhancement framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5618319
15 ZHU X, LIN M, ZHAO M, et al Adaptive underwater image enhancement based on color compensation and fusion[J]. Signal, Image and Video Processing, 2023, 17 (5): 2201- 2210
doi: 10.1007/s11760-022-02435-5
16 HUANG Y, YUAN F, XIAO F, et al Underwater image enhancement based on zero-reference deep network[J]. IEEE Journal of Oceanic Engineering, 2023, 48 (3): 903- 924
doi: 10.1109/JOE.2023.3245686
17 PARK C W, EOM I K Underwater image enhancement using adaptive standardization and normalization networks[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107445
doi: 10.1016/j.engappai.2023.107445
18 GUAN F, LU S, LAI H, et al AUIE-GAN: adaptive underwater image enhancement based on generative adversarial networks[J]. Journal of Marine Science and Engineering, 2023, 11 (7): 1476
doi: 10.3390/jmse11071476
19 梁秀满, 赵治刚, 于海峰, 等 基于颜色线模型和多尺度融合的水下图像增强[J]. 控制与决策, 2025, 40 (1): 162- 169
LIANG Xiuman, ZHAO Zhigang, YU Haifeng, et al Underwater image enhancement based on color-line model and multi-scale fusion[J]. Control and Decision, 2025, 40 (1): 162- 169
20 温佩芝, 陈君谋, 肖雁南, 等 基于生成式对抗网络和多级小波包卷积网络的水下图像增强算法[J]. 浙江大学学报: 工学版, 2022, 56 (2): 213- 224
WEN Peizhi, CHEN Junmou, XIAO Yannan, et al Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (2): 213- 224
21 ZHONG Z, LIN Z Q, BIDART R, et al. Squeeze-and-attention networks for semantic segmentation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13065–13074.
22 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30, 6000 – 6010.
23 JIANG Y, GONG X, LIU D, et al EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340- 2349
doi: 10.1109/TIP.2021.3051462
24 HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
25 ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2242–2251.
26 LI C, GUO J, GUO C Emerging from water: underwater image color correction based on weakly supervised color transfer[J]. IEEE Signal Processing Letters, 2018, 25 (3): 323- 327
doi: 10.1109/LSP.2018.2792050
27 ISLAM M J, XIA Y, SATTAR J Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 3227- 3234
doi: 10.1109/LRA.2020.2974710
28 LI C, GUO C, REN W, et al An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376- 4389
29 LI H, LI J, WANG W. A fusion adversarial underwater image enhancement network with a public test dataset [EB/OL]. [2024–03–02]. https://arxiv.org/abs/1906.06819v2.
30 ZUIDERVELD K. Contrast limited adaptive histogram equalization [M]// Graphics gems. Amsterdam: Elsevier, 1994: 474–485.
31 DREWS P JR, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images [C]// IEEE International Conference on Computer Vision Workshops. Sydney: IEEE, 2013: 825–830.
32 FU X, ZHUANG P, HUANG Y, et al. A retinex-based enhancing approach for single underwater image [C]// IEEE International Conference on Image Processing. Paris: IEEE, 2014: 4572–4576.
33 PENG Y T, COSMAN P C Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26 (4): 1579- 1594
doi: 10.1109/TIP.2017.2663846
34 LIU S, FAN H, LIN S, et al Adaptive learning attention network for underwater image enhancement[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 5326- 5333
doi: 10.1109/LRA.2022.3156176
[1] 李灿林,张文娇,邵志文,马利庄,王新玥. 基于Trans-nightSeg的夜间道路场景语义分割方法[J]. 浙江大学学报(工学版), 2024, 58(2): 294-303.
[2] 张剑钊,郭继昌,汪昱东. 基于融合逆透射率图的水下图像增强算法[J]. 浙江大学学报(工学版), 2023, 57(5): 921-929.
[3] 廖嘉文,庞彦伟,聂晶,孙汉卿,曹家乐. 基于特征融合和一致性损失的双目低光照增强[J]. 浙江大学学报(工学版), 2023, 57(12): 2456-2466.
[4] 成宏达,骆海明,夏庆超,杨灿军. 基于改进γ-CLAHE算法的水下机器人图像识别[J]. 浙江大学学报(工学版), 2022, 56(8): 1648-1655.
[5] 温佩芝,陈君谋,肖雁南,温雅媛,黄文明. 基于生成式对抗网络和多级小波包卷积网络的水下图像增强算法[J]. 浙江大学学报(工学版), 2022, 56(2): 213-224.
[6] 程训,余建波. 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报(工学版), 2021, 55(5): 896-904.
[7] 雍子叶,郭继昌,李重仪. 融入注意力机制的弱监督水下图像增强算法[J]. 浙江大学学报(工学版), 2021, 55(3): 555-562.
[8] 王万良,杨小涵,赵燕伟,高楠,吕闯,张兆娟. 采用卷积自编码器网络的图像增强算法[J]. 浙江大学学报(工学版), 2019, 53(9): 1728-1740.
[9] 刘涛, 赵巨峰, 徐之海, 冯华君, 陈慧芳. 基于卡尔曼滤波的红外图像增强算法[J]. J4, 2012, 46(8): 1534-1539.
[10] 张赞超, 夏顺仁. 全自动尿液图像识别技术[J]. J4, 2009, 43(5): 832-838.
[11] 张赞超 夏顺仁 段会龙. 基于细胞神经网络的尿沉渣图像分割[J]. J4, 2008, 42(12): 2139-2144.
[12] 喻琪 夏顺仁 丛卫华 张峰山 杨晓帆. 基于小波系数相关性和模糊理论的声纳图像处理[J]. J4, 2008, 42(12): 2151-2155.
[13] 张懿 刘旭 李海峰. 适应图像直方图均衡算法[J]. J4, 2007, 41(4): 630-633.