计算机技术 |
|
|
|
|
基于改进CycleGAN的多失真类型水下图像增强 |
吕振鸣1( ),董绍江1,*( ),夏宗佑2,牟小燕3,王明权4 |
1. 重庆交通大学 机电与车辆工程学院,重庆 400074 2. 重庆交通大学 交通运输学院,重庆 400074 3. 重庆工业职业技术学院 机械工程学院,重庆 402260 4. 重庆市勘测院,重庆 400020 |
|
Multi-distortion type underwater image enhancement based on improved CycleGAN |
Zhenming LV1( ),Shaojiang DONG1,*( ),Zongyou XIA2,Xiaoyan MOU3,Mingquan WANG4 |
1. School of Mechantronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China 2. College of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China 3. School of Mechanical Engineering, Chongqing Vocational and Technical College of Industry, Chongqing 402260, China 4. Chongqing Survey Institute, Chongqing 400020, China |
引用本文:
吕振鸣,董绍江,夏宗佑,牟小燕,王明权. 基于改进CycleGAN的多失真类型水下图像增强[J]. 浙江大学学报(工学版), 2025, 59(6): 1148-1158.
Zhenming LV,Shaojiang DONG,Zongyou XIA,Xiaoyan MOU,Mingquan WANG. Multi-distortion type underwater image enhancement based on improved CycleGAN. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1148-1158.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.006
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1148
|
1 |
WHITCOMB L, YOERGER D R, SINGH H, et al. Advances in underwater robot vehicles for deep ocean exploration: navigation, control, and survey operations [C]// Robotics Research: the 9th International Symposium. London: Springer, 2000: 439−448.
|
2 |
LI X, HOU G, TAN L, et al A hybrid framework for underwater image enhancement[J]. IEEE Access, 2020, 8: 197448- 197462
doi: 10.1109/ACCESS.2020.3034275
|
3 |
FU X, ZHUANG P, HUANG Y, et al. A retinex-based enhancing approach for single underwater image [C]// IEEE International Conference on Image Processing. Paris: IEEE, 2014: 4572–4576.
|
4 |
PAN P, YUAN F, CHENG E Underwater image de-scattering and enhancing using dehazenet and HWD[J]. Journal of Marine Science and Technology, 2018, 26 (4): 6
|
5 |
SHEN L, REDA M, ZHANG X, et al Polarization-driven solution for mitigating scattering and uneven illumination in underwater imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4202615
|
6 |
MENG H, YAN Y, CAI C, et al A hybrid algorithm for underwater image restoration based on color correction and image sharpening[J]. Multimedia Systems, 2022, 28 (6): 1975- 1985
doi: 10.1007/s00530-020-00693-2
|
7 |
PEREZ J, ATTANASIO A C, NECHYPORENKO N, et al. A deep learning approach for underwater image enhancement [C]// Biomedical Applications Based on Natural and Artificial Computing. Cham: Springer International Publishing, 2017: 183–192.
|
8 |
WEI D, XIE H, ZHANG Z, et al Learning a Holistic-Specific color transformer with Couple Contrastive constraints for underwater image enhancement and beyond[J]. Journal of Visual Communication and Image Representation, 2024, 98: 104059
doi: 10.1016/j.jvcir.2024.104059
|
9 |
ZHANG T, LIU Y MTUW-GAN: a multi-teacher knowledge distillation generative adversarial network for underwater image enhancement[J]. Applied Sciences, 2024, 14 (2): 529
doi: 10.3390/app14020529
|
10 |
ANWAR S, LI C, PORIKLI F, et al. Deep underwater image enhancement [EB/OL]. [2024-03-02]. https://arxiv.org/abs/1807.03528v1.
|
11 |
LIANG D, CHU J, CUI Y, et al NPT-UL: an underwater image enhancement framework based on nonphysical transformation and unsupervised learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5608819
|
12 |
LIU Q, ZHANG Q, LIU W, et al WSDS-GAN: a weak-strong dual supervised learning method for underwater image enhancement[J]. Pattern Recognition, 2023, 143: 109774
doi: 10.1016/j.patcog.2023.109774
|
13 |
PARK J, HAN D K, KO H Adaptive weighted multi-discriminator CycleGAN for underwater image enhancement[J]. Journal of Marine Science and Engineering, 2019, 7 (7): 200
doi: 10.3390/jmse7070200
|
14 |
WANG H, ZHANG W, BAI L, et al Metalantis: a comprehensive underwater image enhancement framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5618319
|
15 |
ZHU X, LIN M, ZHAO M, et al Adaptive underwater image enhancement based on color compensation and fusion[J]. Signal, Image and Video Processing, 2023, 17 (5): 2201- 2210
doi: 10.1007/s11760-022-02435-5
|
16 |
HUANG Y, YUAN F, XIAO F, et al Underwater image enhancement based on zero-reference deep network[J]. IEEE Journal of Oceanic Engineering, 2023, 48 (3): 903- 924
doi: 10.1109/JOE.2023.3245686
|
17 |
PARK C W, EOM I K Underwater image enhancement using adaptive standardization and normalization networks[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107445
doi: 10.1016/j.engappai.2023.107445
|
18 |
GUAN F, LU S, LAI H, et al AUIE-GAN: adaptive underwater image enhancement based on generative adversarial networks[J]. Journal of Marine Science and Engineering, 2023, 11 (7): 1476
doi: 10.3390/jmse11071476
|
19 |
梁秀满, 赵治刚, 于海峰, 等 基于颜色线模型和多尺度融合的水下图像增强[J]. 控制与决策, 2025, 40 (1): 162- 169 LIANG Xiuman, ZHAO Zhigang, YU Haifeng, et al Underwater image enhancement based on color-line model and multi-scale fusion[J]. Control and Decision, 2025, 40 (1): 162- 169
|
20 |
温佩芝, 陈君谋, 肖雁南, 等 基于生成式对抗网络和多级小波包卷积网络的水下图像增强算法[J]. 浙江大学学报: 工学版, 2022, 56 (2): 213- 224 WEN Peizhi, CHEN Junmou, XIAO Yannan, et al Underwater image enhancement algorithm based on GAN and multi-level wavelet CNN[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (2): 213- 224
|
21 |
ZHONG Z, LIN Z Q, BIDART R, et al. Squeeze-and-attention networks for semantic segmentation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13065–13074.
|
22 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30, 6000 – 6010.
|
23 |
JIANG Y, GONG X, LIU D, et al EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340- 2349
doi: 10.1109/TIP.2021.3051462
|
24 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
|
25 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2242–2251.
|
26 |
LI C, GUO J, GUO C Emerging from water: underwater image color correction based on weakly supervised color transfer[J]. IEEE Signal Processing Letters, 2018, 25 (3): 323- 327
doi: 10.1109/LSP.2018.2792050
|
27 |
ISLAM M J, XIA Y, SATTAR J Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 3227- 3234
doi: 10.1109/LRA.2020.2974710
|
28 |
LI C, GUO C, REN W, et al An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing, 2019, 29: 4376- 4389
|
29 |
LI H, LI J, WANG W. A fusion adversarial underwater image enhancement network with a public test dataset [EB/OL]. [2024–03–02]. https://arxiv.org/abs/1906.06819v2.
|
30 |
ZUIDERVELD K. Contrast limited adaptive histogram equalization [M]// Graphics gems. Amsterdam: Elsevier, 1994: 474–485.
|
31 |
DREWS P JR, DO NASCIMENTO E, MORAES F, et al. Transmission estimation in underwater single images [C]// IEEE International Conference on Computer Vision Workshops. Sydney: IEEE, 2013: 825–830.
|
32 |
FU X, ZHUANG P, HUANG Y, et al. A retinex-based enhancing approach for single underwater image [C]// IEEE International Conference on Image Processing. Paris: IEEE, 2014: 4572–4576.
|
33 |
PENG Y T, COSMAN P C Underwater image restoration based on image blurriness and light absorption[J]. IEEE Transactions on Image Processing, 2017, 26 (4): 1579- 1594
doi: 10.1109/TIP.2017.2663846
|
34 |
LIU S, FAN H, LIN S, et al Adaptive learning attention network for underwater image enhancement[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 5326- 5333
doi: 10.1109/LRA.2022.3156176
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|