土木与建筑工程 |
|
|
|
|
基于YOLOv5和Mask-RCNN组合模型的社交媒体内涝灾害分析 |
张凌嘉( ),周欣磊,许月萍,江衍铭*( ) |
浙江大学 建筑工程学院,浙江 杭州 310058 |
|
Analysis of inundation from social media based on integrated YOLOv5 and Mask-RCNN model |
Lingjia ZHANG( ),Xinlei ZHOU,Yueping XU,Yenming CHIANG*( ) |
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China |
引用本文:
张凌嘉,周欣磊,许月萍,江衍铭. 基于YOLOv5和Mask-RCNN组合模型的社交媒体内涝灾害分析[J]. 浙江大学学报(工学版), 2024, 58(9): 1822-1831.
Lingjia ZHANG,Xinlei ZHOU,Yueping XU,Yenming CHIANG. Analysis of inundation from social media based on integrated YOLOv5 and Mask-RCNN model. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1822-1831.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.09.007
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I9/1822
|
20 |
章卫军, 廖青桃, 杨森, 等 从郑州“2021.7. 20”水灾模型推演看城市洪涝风险管理[J]. 中国防汛抗旱, 2021, 31 (9): 1- 4 ZHANG Weijun, LIAO Qingtao, YANG Sen, et al Thoughts and inspirations: urban flood risk management inferred from Zhengzhou flood model[J]. China Flood and Drought Management, 2021, 31 (9): 1- 4
|
1 |
李莹, 赵珊珊 2001—2020年中国洪涝灾害损失与致灾危险性研究[J]. 气候变化研究进展, 2022, 18 (2): 154- 165 LI Ying, ZHAO Shanshan Floods losses and hazards in China from 2001 to 2020[J]. Climate Change Research, 2022, 18 (2): 154- 165
|
2 |
新华社. 河南郑州 “7·20” 特大暴雨灾害调查报告公布[EB/OL]. [2022-11-26]. https://www.gov.cn/xinwen/2022-01/21/content_5669723.htm, 2022.
|
3 |
刘家宏, 裴羽佳, 梅超, 等 郑州“7·20”特大暴雨内涝成因及灾害防控[J]. 郑州大学学报: 工学版, 2023, 44 (2): 38- 45 LIU Jiahong, PEI Yujia, MEI Chao, et al Waterlogging cause and disaster prevention and control of “7·20” torrential rain in Zhengzhou[J]. Journal of Zhengzhou University: Engineering Science, 2023, 44 (2): 38- 45
|
4 |
DE ALBUQUERQUE J P, HERFORT B, BRENNING A, et al A geographic approach for combining social media and authoritative data towards identifying useful information for disaster management[J]. International Journal of Geographical Information Science, 2015, 29 (4): 667- 689
doi: 10.1080/13658816.2014.996567
|
5 |
ROSSER J F, LEIBOVICI D G, JACKSON M J Rapid flood inundation mapping using social media, remote sensing and topographic data[J]. Natural Hazards, 2017, 87: 103- 120
doi: 10.1007/s11069-017-2755-0
|
6 |
SATHIANARAYANAN M, HSU P H, CHANG C C. Extracting disaster location identification from social media images using deep learning[J]. International Journal of Disaster Risk Reduction , 2024: 104352.
|
7 |
KIM J, HASTAK M Social network analysis: characteristics of online social networks after a disaster[J]. International Journal of Information Management, 2018, 38 (1): 86- 96
doi: 10.1016/j.ijinfomgt.2017.08.003
|
8 |
周利敏 大数据时代的社交媒体与自然灾害治理[J]. 人文杂志, 2021, (1): 102- 109 ZHOU Limin Social media and natural disaster management in the era of big data[J]. The Journal of Humanities, 2021, (1): 102- 109
|
9 |
金城, 吴文渊, 陈柏儒, 等 面向不同用户群体的社交媒体台风舆情演化分析及对比研究[J]. 地球信息科学学报, 2021, 23 (12): 2174- 2186 JIN Cheng, WU Wenyuan, CHEN Bairu, et al Analysis and comparative study of the evolution of public opinion on social media during typhoon for different user groups[J]. Journal of Geo-information Science, 2021, 23 (12): 2174- 2186
|
10 |
JING M, SCOTNEY B W, COLEMAN S A, et al. Integration of text and image analysis for flood event image recognition [C]// 27th Irish Signals and Systems Conference . Londonderry: IEEE, 2016: 1−6.
|
11 |
GUPTA A, LAMBA H, KUMARAGURU P, et al. Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy [C]// Proceedings of the 22nd International Conference on World Wide Web . Rio de Janeiro: ACM, 2013: 729−736.
|
12 |
ALLCOTT H, GENTZKOW M, YU C, et al. Trends in the diffusion of misinformation on social media [J]. Research and Politics , 2019, 6(2): 2053168019848554.
|
13 |
TALWAR S, DHIR A, KAURP, et al Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior[J]. Journal of Retailing and Consumer Services, 2019, 1 (51): 72- 82
|
14 |
JIM Z, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs [C]// Proceedings of the 25th ACM International Conference on Multimedia . New York: ACM, 2017: 795−816.
|
15 |
LIN F, CHANG W Y, LEE L C, et al. Applications of image recognition for real-time water level and surface velocity [C]// IEEE International Symposium on Multimedia . Anaheim: IEEE, 2013: 259−262.
|
16 |
许小华, 李亚琳, 吕姚, 等 基于两阶段深度学习的水位智能识别方法[J]. 中国防汛抗旱, 2023, 33 (10): 13- 20 XU Xiaohua, LI Yalin, LYU Yao, et al Intelligent recognition algorithm for water level measurement based on improved YOLOX-S algorithm[J]. China Flood and Drought Management, 2023, 33 (10): 13- 20
|
17 |
李小宁, 俞悦, 王船海, 等 南方平原河网区城市内涝的全过程监测与特征分析[J]. 水利学报, 2022, 53 (7): 845- 853 LI Xiaoning, YU Yue, WANG Chuanhai, et al Monitoring and characterization of the entire urban flooding process in the typical southern plain river network area[J]. Journal of Hydraulic Engineering, 2022, 53 (7): 845- 853
|
18 |
JAFARI NH, LI X, CHEN Q, et al Real-time water level monitoring using live cameras and computer vision techniques[J]. Computers and Geosciences, 2021, 147: 104642
doi: 10.1016/j.cageo.2020.104642
|
19 |
柳进元, 张明锋 基于YOLOv5算法的图像水深自动提取[J]. 福建师范大学学报: 自然科学版, 2023, 39 (1): 86- 92 LIU Jinyuan, ZHANG Mingfeng Automatic image water depth extraction based on YOLOv5 algorithm[J]. Journal of Fujian Normal University: Natural Science Edition, 2023, 39 (1): 86- 92
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|