计算机技术 |
|
|
|
|
基于空间相关性增强的无人机检测算法 |
张会娟1,2( ),李坤鹏1,姬淼鑫1,*( ),刘振江1,刘建娟1,张弛1 |
1. 河南工业大学 电气工程学院,河南 郑州 450001 2. 北京理工大学 自动化学院,北京 100081 |
|
UAV detection algorithm based on spatial correlation enhancement |
Huijuan ZHANG1,2( ),Kunpeng LI1,Miaoxin JI1,*( ),Zhenjiang LIU1,Jianjuan LIU1,Chi ZHANG1 |
1. College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China 2. School of Automation, Beijing Institute of Technology, Beijing 100081, China |
引用本文:
张会娟,李坤鹏,姬淼鑫,刘振江,刘建娟,张弛. 基于空间相关性增强的无人机检测算法[J]. 浙江大学学报(工学版), 2024, 58(3): 468-479.
Huijuan ZHANG,Kunpeng LI,Miaoxin JI,Zhenjiang LIU,Jianjuan LIU,Chi ZHANG. UAV detection algorithm based on spatial correlation enhancement. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 468-479.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.004
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I3/468
|
1 |
BALESTRIERI E, DAPONTE P, DE VITO L, et al Sensors and measurements for UAV safety: an overview[J]. Sensors, 2021, 21 (24): 8253
doi: 10.3390/s21248253
|
2 |
LIU Y, SUN P, WERGELES N, et al A survey and performance evaluation of deep learning methods for small object detection[J]. Expert Systems with Applications, 2021, 172: 114602
doi: 10.1016/j.eswa.2021.114602
|
3 |
KOUSHIK J. Understanding convolutional neural networks [EB/OL]. (2016-05-30). https://arxiv.org/abs/1605.09081.
|
4 |
韩俊, 袁小平, 王准, 等 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报:工学版, 2023, 57 (6): 1224- 1233 HAN Jun, YUAN Xiaoping, WANG Zhun, et al UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (6): 1224- 1233
|
5 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the IEEE conference on Computer Vision and Pattern Recognition . Columbus: IEEE, 2014: 580−587.
|
6 |
GIRSHICK R. Fast R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision . Santiago: IEEE, 2015: 1440−1448.
|
7 |
REN S Q, HE K M, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2016, 39 (6): 1137- 1149
|
8 |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN [C]// Proceedings of the IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 2961–2969.
|
9 |
张艳, 孙晶雪, 孙叶美, 等 基于分割注意力与线性变换的轻量化目标检测[J]. 浙江大学学报:工学版, 2023, 57 (6): 1195- 1204 ZHANG Yan, SUN Jingxue, SUN Yemei, et al Lightweight object detection based on split attention and linear transformation[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (6): 1195- 1204
|
10 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 779–788.
|
11 |
LIU W, ANGUELOY D, ERHAN D, et al. SSD: single shot multibox detector [C]// Proceedings of the 14th European Conference on Computer Vision . Berlin: ECCV, 2016: 21−37.
|
12 |
WANG Q, QIAN Y, HU Y, et al M2YOLOF: based on effective receptive fields and multiple-in-single-out encoder for object detection[J]. Expert Systems with Applications, 2023, 213: 118928
doi: 10.1016/j.eswa.2022.118928
|
13 |
PENG C, ZHU M, REN H G, et al Small object detection method based on weighted feature fusion and CSMA attention module[J]. Electronics, 2022, 11 (16): 2546
doi: 10.3390/electronics11162546
|
14 |
MIN K, LEE G H, LEE S W Attentional feature pyramid network for small object detection[J]. Neural Networks, 2022, 155: 439- 450
doi: 10.1016/j.neunet.2022.08.029
|
15 |
JU M R, LUO J N, ZHANG P P, et al A simple and efficient network for small target detection[J]. IEEE Access, 2019, 7: 85771- 85781
doi: 10.1109/ACCESS.2019.2924960
|
16 |
DENG C F, WANG M M, LIU L, et al Extended feature pyramid network for small object detection[J]. IEEE Transactions on Multimedia, 2021, 24: 1968- 1979
|
17 |
HE X W, CHENG R, ZHENG Z L, et al Small object detection in traffic scenes based on YOLO-MXANet[J]. Sensors, 2021, 21 (21): 7422
doi: 10.3390/s21217422
|
18 |
JI S J, LING Q H, HAN F An improved algorithm for small object detection based on YOLOv4 and multi-scale contextual information[J]. Computers and Electrical Engineering, 2023, 105: 108490
doi: 10.1016/j.compeleceng.2022.108490
|
19 |
张娜, 戚旭磊, 包晓安, 等 基于优化预测定位的单阶段目标检测算法[J]. 浙江大学学报:工学版, 2022, 56 (4): 783- 794 ZHANG Na, QI Xulei, BAO Xiaoan, et al Single-stage object detection algorithm based on optimizing position prediction[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 783- 794
|
20 |
谢誉, 包梓群, 张娜, 等 基于特征优化与深层次融合的目标检测算法[J]. 浙江大学学报:工学版, 2022, 56 (12): 2403- 2415 XIE Yu, BAO Ziqun, ZHANG Na, et al Object detection algorithm based on feature enhancement and deep fusion[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (12): 2403- 2415
|
21 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [EB/OL]. (2020-04-23). https://arxiv.org/abs/2004.10934v1.
|
22 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 8759-8768.
|
23 |
LIU H Y, SUN F Q, GU J, et al Sf-YOLOv5: a lightweight small object detection algorithm based on improved feature fusion mode[J]. Sensors, 2022, 22 (15): 5817
doi: 10.3390/s22155817
|
24 |
张云佐, 郭威, 蔡昭权, 等 联合多尺度与注意力机制的遥感图像目标检测[J]. 浙江大学学报:工学版, 2022, 56 (11): 2215- 2223 ZHANG Yunzuo, GUO Wei, CAI Zhaoquan, et al Remote sensing image target detection combining multi-scale and attention mechanism[J]. Journal of Zhejiang University:Engineering Science, 2022, 56 (11): 2215- 2223
|
25 |
KIM M, KIM H, SUNG J, et al High-resolution processing and sigmoid fusion modules for efficient detection of small objects in an embedded system[J]. Scientific Reports, 2023, 13 (1): 244
doi: 10.1038/s41598-022-27189-5
|
26 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFS [EB/OL]. (2014-12-22). https://arxiv.org/abs/1412.7062.
|
27 |
ZHAN W, SUN C F, WANG M C, et al An improved YOLOv5 real-time detection method for small objects captured by UAV[J]. Soft Computing, 2022, 26: 361- 373
doi: 10.1007/s00500-021-06407-8
|
28 |
WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision . Munich: ECCV. 2018: 3−19.
|
29 |
DU D W, ZHU P F, WEN L Y, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops . Seoul: IEEE, 2019.
|
30 |
ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 4203−4212.
|
31 |
LIU S H, ZHA J L, SUN J, et al. EdgeYOLO: an edge-real-time object detector [EB/OL]. [2023-02-15]. https://arxiv.org/abs/2302.07483.
|
32 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network [C]// Proceedings of the IEEE/cvf Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 13029−13038.
|
33 |
CUI L S, MA R, LV P, et al MDSSD: multi-scale deconvolutional single shot detector for small objects[J]. Science China Information Sciences, 2020, 63: 120113
doi: 10.1007/s11432-019-2723-1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|