计算机技术 |
|
|
|
|
基于特征过滤与特征解耦的域泛化模型 |
刘坤( ),王丁,王静凯,陈海永*( ),刘卫朋 |
1. 河北工业大学 人工智能与数据科学学院,天津 300131 |
|
Feature filtering and feature decoupling based domain generalization model |
Kun LIU( ),Ding WANG,Jingkai WANG,Haiyong CHEN*( ),Weipeng LIU |
1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300131, China |
引用本文:
刘坤,王丁,王静凯,陈海永,刘卫朋. 基于特征过滤与特征解耦的域泛化模型[J]. 浙江大学学报(工学版), 2024, 58(3): 459-467.
Kun LIU,Ding WANG,Jingkai WANG,Haiyong CHEN,Weipeng LIU. Feature filtering and feature decoupling based domain generalization model. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 459-467.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.003
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I3/459
|
1 |
CHEN H, PANG Y, HU Q, et al Solar cell surface defect inspection based on multispectral convolutional neural network[J]. Journal of Intelligent Manufacturing, 2020, 31 (2): 453- 468
doi: 10.1007/s10845-018-1458-z
|
2 |
SU B, CHEN H, LIU K, et al RCAG-Net: residual channel-wise attention gate network for hot spot defect detection of photovoltaic farms[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1- 14
|
3 |
YU J, ZHENG X, LIU J Stacked convolutional sparse denoising auto-encoder for identification of defect patterns in semiconductor wafer map[J]. Computers in Industry, 2019, 109: 121- 133
doi: 10.1016/j.compind.2019.04.015
|
4 |
MIAO R, GAO Y, GE L, et al Online defect recognition of narrow overlap weld based on two-stage recognition model combining continuous wavelet transform and convolutional neural network[J]. Computers in Industry, 2019, 112: 103115- 103125
doi: 10.1016/j.compind.2019.07.005
|
5 |
LI D, XIE Q, GONG X, et al Automatic defect detection of metro tunnel surfaces using a vision-based inspection system[J]. Advanced Engineering Informatics, 2021, 47: 101206- 101217
doi: 10.1016/j.aei.2020.101206
|
6 |
LI L, GAO K, CAO J, et al. Progressive domain expansion network for single domain generalization [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . [s. l.]: IEEE, 2021: 224−233.
|
7 |
RAHMAN M M, FOOKES C, BAKTASHMOTLAGH M, et al. Multi-component image translation for deep domain generalization [C]// 2019 IEEE Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2019: 579−588.
|
8 |
WANG Z, LUO Y, QIU R, et al. Learning to diversify for single domain generalization [C]// IEEE/CVF International Conference on Computer Vision . [s. l.]: IEEE, 2021: 834-843.
|
9 |
ZHOU K, YANG Y, HOSPEDALES T, et al. Learning to generate novel domains for domain generalization [C]// European conference on computer vision . Glasgow: Springer, 2020: 561−578.
|
10 |
FAN X, WANG Q, KE J, et al. Adversarially adaptive normalization for single domain generalization [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . [s. l.]: IEEE, 2021: 8208−8217.
|
11 |
WANG H, LI Z, WANG H Few-shot steel surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 1- 12
|
12 |
DUAN G, SONG Y, LIU Z, et al Cross-domain few-shot defect recognition for metal surfaces[J]. Measurement Science and Technology, 2022, 34 (1): 015202
|
13 |
CHEN C, LI J, HAN X, et al. Compound domain generalization via meta-knowledge encoding [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 7119−7129.
|
14 |
SHIAU Z Y, LIN W W, LIN C S, et al. Meta-learned feature critics for domain generalized semantic segmentation [C]// IEEE International Conference on Image Processing . Anchorage: IEEE, 2021: 2244-2248.
|
15 |
PAN X, LUO P, SHI J, et al. Two at once: enhancing learning and generalization capacities via ibn-net [C]// European Conference on Computer Vision . Munich: Springer, 2018: 464−479.
|
16 |
ZHOU K, YANG Y, CAVALLARO A, et al. Omni-scale feature learning for person re-identification [C]// IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 3702−3712.
|
17 |
XIE T, HUANG X, CHOI S K Metric-based meta-learning for cross-domain few-shot identification of welding defect[J]. Journal of Computing and Information Science in Engineering, 2023, 23 (3): 030902
doi: 10.1115/1.4056219
|
18 |
ZHOW Z, LAN C, GAO Z. Cross-domain defect detection network [C]// 2022 Asia Conference on Algorithms, Computing and Machine Learning . Hangzhou: IEEE, 2022: 272−279.
|
19 |
MA S, SONG K, NIU M, et al Cross-scale fusion and domain adversarial network for generalizable rail surface defect segmentation on unseen datasets[J]. Journal of Intelligent Manufacturing, 2022, 27: 1- 20
|
20 |
NAM H, KIM H E. Batch-instance normalization for adaptively style-invariant neural networks [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems . Montréal: IEEE, 2018: 2563−2572.
|
21 |
JIN X, LAN C, ZENG W, et al Style normalization and restitution for domain generalization and adaptation[J]. IEEE Transactions on Multimedia, 2021, 24: 3636- 3651
|
22 |
TANG Z, GAO Y, ZHU Y, et al. CrossNorm and SelfNorm for generalization under distribution shifts [C]// IEEE/CVF International Conference on Computer Vision . [s. l.]: IEEE, 2021: 52−61.
|
23 |
HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization [C]// IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 1501−1510.
|
24 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 7464−7475.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|