Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (3): 459-467    DOI: 10.3785/j.issn.1008-973X.2024.03.003
计算机技术     
基于特征过滤与特征解耦的域泛化模型
刘坤(),王丁,王静凯,陈海永*(),刘卫朋
1. 河北工业大学 人工智能与数据科学学院,天津 300131
Feature filtering and feature decoupling based domain generalization model
Kun LIU(),Ding WANG,Jingkai WANG,Haiyong CHEN*(),Weipeng LIU
1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300131, China
 全文: PDF(1385 KB)   HTML
摘要:

针对跨场景情况下图像亮度不一致导致的深度缺陷检测模型泛化性能差的问题,提出基于特征过滤与特征解耦的域泛化(FF-FDDG)模型. 模型包含设计的亮度过滤-残差模块(LFR),该模块通过实例归一化过滤亮度变化特征,并从被过滤的特征中提取缺陷高相关性且亮度低关联性的特征,并将这些特征与实例级归一化后的特征进行融合,以增强模型在跨场景图像亮度变换情况下的泛化能力. 提出对比白化损失(CWL)函数,该函数通过解耦特征中亮度变换特征和缺陷纹理特征,引导模型学习缺陷纹理特征,以提升模型泛化能力. 在从光伏电池制造环境中收集的跨场景光伏电池表面缺陷数据上进行实验,结果表明,相较于现阶段最先进的域泛化模型,所提出的FF-FDDG在跨场景情况下的平均检测精度(mAP)均值提升5.01%.

关键词: 缺陷检测域泛化跨场景亮度过滤-残差模块对比白化损失    
Abstract:

A feature filtering and feature decoupling based domain generalization model (FF-FDDG) was proposed, aiming at the problem of poor generalization performance of the deep defect detection model caused by inconsistent image brightness across scenes. A designed luminance filtering-residual module (LFR) was included in the proposed model. The brightness variation features were filtered out through instance normalization, the features with high defect correlation and low brightness correlation were extracted from the filtered features, and these features were fused to enhance the generalization ability of the model under the condition of cross-scenario image brightness transformation. Furthermore, a contrast whitening loss (CWL) function was proposed, by which the model was guided to learn the defect texture feature by decoupling the brightness transform feature and the defect texture feature, so as to improve the model generalization ability. The experimental results on the cross-scenario surface defect data collected in the photovoltaic cell manufacturing environment showed that, compared with the state-of-the-art domain generalization model, the average mean average precision (mAP) of the proposed FF-FDDG model in cross-scenario situations was improved by 5.01%.

Key words: defect detection    domain generalization    cross-scenario    luminance filtering-residual module    contrast whitening loss
收稿日期: 2023-03-21 出版日期: 2024-03-05
CLC:  TP 391  
基金资助: 国家自然科学基金资助项目(62173124);河北省自然科学基金资助项目(F2022202064).
通讯作者: 陈海永     E-mail: liukun@hebut.edu.cn;haiyong.chen@hebut.edu.cn
作者简介: 刘坤(1980—),女,教授,从事图像处理、机器视觉研究. orcid.org/0000-0002-5034-9249. E-mail:liukun@hebut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘坤
王丁
王静凯
陈海永
刘卫朋

引用本文:

刘坤,王丁,王静凯,陈海永,刘卫朋. 基于特征过滤与特征解耦的域泛化模型[J]. 浙江大学学报(工学版), 2024, 58(3): 459-467.

Kun LIU,Ding WANG,Jingkai WANG,Haiyong CHEN,Weipeng LIU. Feature filtering and feature decoupling based domain generalization model. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 459-467.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.003        https://www.zjujournals.com/eng/CN/Y2024/V58/I3/459

图 1  基于特征过滤与特征解耦的域泛化模型
图 2  亮度过滤-残差模块
图 3  实例级归一化前后的特征对比
图 4  对比白化损失计算流程
图 5  光伏电池缺陷检测图像采集设备
图 6  不同亮度图像实例及其亮度分布
方法SEL_1$\Rightarrow $SEL_2SEL_1$\Rightarrow $SEL_3
APmAPAPmAP
开焊漏焊碎片隐裂开焊漏焊碎片隐裂
YOLOv7[24]72.6377.6586.3262.1674.6918.0256.5971.0030.9744.14
IN[13]79.2575.8684.1971.2277.6347.0867.8371.4641.2556.91
SNR[16]88.8488.3687.0260.0681.0737.1770.7477.4250.6859.00
CNSN[17]70.6676.3777.2880.2376.1473.1083.4962.6347.6266.71
FF-FDDG91.2089.5487.3478.0386.5378.7290.3271.6956.6974.36
方法SEL_2$\Rightarrow $SEL_1SEL_2$\Rightarrow $SEL_3
APmAPAPmAP
开焊漏焊碎片隐裂开焊漏焊碎片隐裂
YOLOv7[24]86.2276.6681.6274.7479.8184.7081.9087.3366.6380.14
IN[13]95.0482.5585.5069.1883.0793.2379.3290.3172.3883.81
SNR[16]93.5279.9082.5372.8682.2091.5085.7991.7973.8785.74
CNSN[17]80.0772.7362.9456.6168.0977.7974.5085.8465.5675.92
FF-FDDG94.4086.0989.3580.9087.7192.0395.5690.9481.4690.00
方法SEL_3$\Rightarrow $SEL_2SEL_3$\Rightarrow $SEL_1
APmAPAPmAP
开焊漏焊碎片隐裂开焊漏焊碎片隐裂
YOLOv7[24]90.7788.2175.8480.7483.8957.8061.0274.6070.7566.04
IN[13]92.4787.3376.9082.3484.7681.5675.4069.6070.3974.24
SNR[16]92.8587.3285.1181.1486.6184.7374.9471.0771.3775.53
CNSN[17]70.6676.3777.2880.2376.1478.4568.7858.9252.7364.72
FF-FDDG92.6089.7382.3183.2986.9888.0878.8975.1672.1578.57
表 1  YOLOv7上不同场景及不同检测模型下的统计性能结果
方法SEL_1$\Rightarrow $SEL_2SEL_1$\Rightarrow $SEL_3
APmAPAPmAP
开焊漏焊碎片隐裂开焊漏焊碎片隐裂
Faster-RCNN[25]84.9286.2361.3712.2561.1949.9582.7574.9418.7255.59
IN[13]86.0386.3564.1915.1262.9285.1985.4963.9616.4262.77
SNR[16]89.7386.1865.8518.0364.9593.3281.0363.7215.1663.31
CNSN[17]79.6685.4663.6118.6361.8478.9081.2262.7819.2860.55
FF-FDDG89.9387.5469.5618.2266.3191.8880.5369.1120.1565.42
方法SEL_2$\Rightarrow $SEL_1SEL_2$\Rightarrow $SEL_3
APmAPAPmAP
开焊漏焊碎片隐裂开焊漏焊碎片隐裂
Faster-RCNN[25]87.9776.4463.1315.1260.6786.6376.7564.9212.1260.11
IN[13]87.5282.0459.7815.4661.2091.5279.1267.5116.5963.69
SNR[16]90.1084.0461.5614.3962.5291.1972.6466.4213.5960.96
CNSN[17]82.7583.1643.3610.3854.9183.6577.1658.509.7257.26
FF-FDDG91.5286.3960.2523.1465.3392.1290.9668.2817.4767.21
方法SEL_3$\Rightarrow $SEL_2SEL_3$\Rightarrow $SEL_1
APmAPAPmAP
开焊漏焊碎片隐裂开焊漏焊碎片隐裂
Faster-RCNN[25]90.3989.7963.8619.0865.7890.9787.3956.8314.0262.30
IN[13]91.4187.9269.7818.4966.9083.4289.1357.5214.4261.12
SNR[16]90.5589.2446.6315.7260.5489.0083.9749.9511.4158.58
CNSN[17]51.0372.5158.0513.2548.7176.8071.5150.1610.8352.32
FF-FDDG92.7990.5568.4520.9168.1888.5181.3262.5525.7964.54
表 2  Faster-RCNN上不同场景及不同检测模型下的统计性能结果
方法SEL1$\Rightarrow $ SEL2SEL1$\Rightarrow $ SEL3SEL2$\Rightarrow $ SEL1SEL2$\Rightarrow $ SEL3SEL3$\Rightarrow $ SEL1SEL3$\Rightarrow $SEL2
基线174.6944.1479.8180.1466.0083.89
基线1+ LFR77.8469.2186.0488.3376.6085.03
基线+LFR+ CWL86.5374.3687.7190.0078.6086.98
表 3  以YOLOv7为基线的消融实验结果
方法SEL1$\Rightarrow $SEL2SEL1$\Rightarrow $SEL3SEL2$\Rightarrow $SEL1SEL2$\Rightarrow $SEL3SEL3$\Rightarrow $SEL1SEL3$\Rightarrow $SEL2
基线261.1955.5960.6760.1162.3065.78
基线2+ LFR62.5959.6361.7763.5262.9367.51
基线2+LFR+ CWL66.3165.4265.5367.2164.5468.18
表 4  以Faster-RCNN为基线的消融实验结果
图 7  不同场景特征可视化结果
方法v/(帧·s?1)平均mAP方法v/(帧·s?1)平均mAP
基线1(YOLOv7)35.9871.45基线2(Faster-RCNN)27.5360.94
IN34.7576.74IN26.9363.10
SNR30.9578.36SNR26.3761.81
CNSN34.2371.29CNSN26.2355.93
FF-FDDG31.2684.02FF-FDDG25.1666.17
表 5  不同域泛化方法检测效率
1 CHEN H, PANG Y, HU Q, et al Solar cell surface defect inspection based on multispectral convolutional neural network[J]. Journal of Intelligent Manufacturing, 2020, 31 (2): 453- 468
doi: 10.1007/s10845-018-1458-z
2 SU B, CHEN H, LIU K, et al RCAG-Net: residual channel-wise attention gate network for hot spot defect detection of photovoltaic farms[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1- 14
3 YU J, ZHENG X, LIU J Stacked convolutional sparse denoising auto-encoder for identification of defect patterns in semiconductor wafer map[J]. Computers in Industry, 2019, 109: 121- 133
doi: 10.1016/j.compind.2019.04.015
4 MIAO R, GAO Y, GE L, et al Online defect recognition of narrow overlap weld based on two-stage recognition model combining continuous wavelet transform and convolutional neural network[J]. Computers in Industry, 2019, 112: 103115- 103125
doi: 10.1016/j.compind.2019.07.005
5 LI D, XIE Q, GONG X, et al Automatic defect detection of metro tunnel surfaces using a vision-based inspection system[J]. Advanced Engineering Informatics, 2021, 47: 101206- 101217
doi: 10.1016/j.aei.2020.101206
6 LI L, GAO K, CAO J, et al. Progressive domain expansion network for single domain generalization [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . [s. l.]: IEEE, 2021: 224−233.
7 RAHMAN M M, FOOKES C, BAKTASHMOTLAGH M, et al. Multi-component image translation for deep domain generalization [C]// 2019 IEEE Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2019: 579−588.
8 WANG Z, LUO Y, QIU R, et al. Learning to diversify for single domain generalization [C]// IEEE/CVF International Conference on Computer Vision . [s. l.]: IEEE, 2021: 834-843.
9 ZHOU K, YANG Y, HOSPEDALES T, et al. Learning to generate novel domains for domain generalization [C]// European conference on computer vision . Glasgow: Springer, 2020: 561−578.
10 FAN X, WANG Q, KE J, et al. Adversarially adaptive normalization for single domain generalization [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . [s. l.]: IEEE, 2021: 8208−8217.
11 WANG H, LI Z, WANG H Few-shot steel surface defect detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 1- 12
12 DUAN G, SONG Y, LIU Z, et al Cross-domain few-shot defect recognition for metal surfaces[J]. Measurement Science and Technology, 2022, 34 (1): 015202
13 CHEN C, LI J, HAN X, et al. Compound domain generalization via meta-knowledge encoding [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 7119−7129.
14 SHIAU Z Y, LIN W W, LIN C S, et al. Meta-learned feature critics for domain generalized semantic segmentation [C]// IEEE International Conference on Image Processing . Anchorage: IEEE, 2021: 2244-2248.
15 PAN X, LUO P, SHI J, et al. Two at once: enhancing learning and generalization capacities via ibn-net [C]// European Conference on Computer Vision . Munich: Springer, 2018: 464−479.
16 ZHOU K, YANG Y, CAVALLARO A, et al. Omni-scale feature learning for person re-identification [C]// IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 3702−3712.
17 XIE T, HUANG X, CHOI S K Metric-based meta-learning for cross-domain few-shot identification of welding defect[J]. Journal of Computing and Information Science in Engineering, 2023, 23 (3): 030902
doi: 10.1115/1.4056219
18 ZHOW Z, LAN C, GAO Z. Cross-domain defect detection network [C]// 2022 Asia Conference on Algorithms, Computing and Machine Learning . Hangzhou: IEEE, 2022: 272−279.
19 MA S, SONG K, NIU M, et al Cross-scale fusion and domain adversarial network for generalizable rail surface defect segmentation on unseen datasets[J]. Journal of Intelligent Manufacturing, 2022, 27: 1- 20
20 NAM H, KIM H E. Batch-instance normalization for adaptively style-invariant neural networks [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems . Montréal: IEEE, 2018: 2563−2572.
21 JIN X, LAN C, ZENG W, et al Style normalization and restitution for domain generalization and adaptation[J]. IEEE Transactions on Multimedia, 2021, 24: 3636- 3651
22 TANG Z, GAO Y, ZHU Y, et al. CrossNorm and SelfNorm for generalization under distribution shifts [C]// IEEE/CVF International Conference on Computer Vision . [s. l.]: IEEE, 2021: 52−61.
23 HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization [C]// IEEE International Conference on Computer Vision . Venice: IEEE, 2017: 1501−1510.
24 WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 7464−7475.
[1] 王安静,袁巨龙,朱勇建,陈聪,吴金津. 基于改进YOLOv8s的鼓形滚子表面缺陷检测算法[J]. 浙江大学学报(工学版), 2024, 58(2): 370-380.
[2] 卞佰成,陈田,吴入军,刘军. 基于改进YOLOv3的印刷电路板缺陷检测算法[J]. 浙江大学学报(工学版), 2023, 57(4): 735-743.
[3] 兰欢,余建波. 基于深度学习三维成型的钢板表面缺陷检测[J]. 浙江大学学报(工学版), 2023, 57(3): 466-476.
[4] 刘坤,杨晓松. 基于无监督域适应的跨场景带钢表面缺陷识别[J]. 浙江大学学报(工学版), 2023, 57(3): 477-485.
[5] 袁天乐,袁巨龙,朱勇建,郑翰辰. 基于改进YOLOv5的推力球轴承表面缺陷检测算法[J]. 浙江大学学报(工学版), 2022, 56(12): 2349-2357.
[6] 赵爽,吴君涛,邱欣晨,王奎华,涂园. 基于水平低应变法的高承台桩缺陷检测研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1867-1876.
[7] 陈杨波,伊国栋,张树有. 基于点云特征对比的曲面翘曲变形检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 81-88.
[8] 梁栋,刘昕宇,潘家兴,孙涵,周文俊,金子俊一. 动态背景下基于自更新像素共现的前景分割[J]. 浙江大学学报(工学版), 2020, 54(12): 2405-2413.
[9] 叶刚,李毅波,马逐曦,成杰. 基于ViBe的端到端铝带表面缺陷检测识别方法[J]. 浙江大学学报(工学版), 2020, 54(10): 1906-1914.
[10] 秦钟伟,陈捷,洪荣晶,吴伟伟. 摩擦片表面缺陷的视觉显著性检测算法[J]. 浙江大学学报(工学版), 2019, 53(10): 1883-1891.