Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (10): 1867-1876    DOI: 10.3785/j.issn.1008-973X.2021.10.008
土木工程、交通工程     
基于水平低应变法的高承台桩缺陷检测研究
赵爽1,2(),吴君涛1,2,邱欣晨1,2,王奎华1,2,*(),涂园1,2
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
Study on defect detection of extended pile shaft under lateral low-strain integrity test
Shuang ZHAO1,2(),Jun-tao WU1,2,Xin-chen QIU1,2,Kui-hua WANG1,2,*(),Yuan TU1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2393 KB)   HTML
摘要:

通过模型试验探究高承台桩埋藏段存在不同尺寸缺陷时的桩身质点水平速度响应,结合有限元(FEA)分析试验结果. 结果表明,基于桩的水平振动特性的低应变检测方法可以用于识别高承台桩桩身缺陷,且缺陷处截面直径越小,桩身质点水平速度响应曲线中缺陷处反射越明显. 随着缺陷高度的变化,缺陷处顶、底面反射信号可能会产生叠加或分离现象,导致不同缺陷高度下缺陷反射的波形不一致. 在数值模拟中,当采用柔性剪切梁单元模拟高承台桩时,数值模拟结果和试验结果吻合较好. 在实际工程中,当应用水平低应变法检测桩身完整性时,推荐采取近承台处激振、近承台处速度采集,可以根据缺陷处反射起振时间较精确地计算桩身缺陷埋深.

关键词: 高承台桩水平振动低应变缺陷检测    
Abstract:

The lateral velocity response of an extended pile shaft with defects of various sizes in the buried section was analyzed through model experiment, and the results were analyzed by combining with finite element analysis (FEA) results. Results show that the low-strain integrity test based on the lateral vibration characteristics of the pile can be used to distinguish the defects on extended pile shaft. The smaller the cross-sectional diameter of the defect is, the more obvious the reflection of the defect on the lateral velocity response of the pile is. As the height of the defect changes, the reflection of the top and bottom of the defect may superpose or separate, reflecting waveforms of the defect under different defect heights are inconsistent. The FEA results accorded well with the experimental results when adopting the shear flexible beam element of FEA to simulate the extended pile shaft. It is recommended that the excitation and receiving positions are both near the cap when conducting low-strain integrity test based on the lateral vibration characteristics of the pile. The depth of the defect can be inferred from the arrival time of the reflection of the defect in practical engineering.

Key words: extended pile shaft    lateral vibration    low-strain    defect detection
收稿日期: 2020-11-06 出版日期: 2021-10-27
CLC:  TU 473  
基金资助: 国家自然科学基金资助项目(52178358,51779217)
通讯作者: 王奎华     E-mail: gnauhszhao@163.com;zdwkh0618@zju.edu.cn
作者简介: 赵爽(1996—),男,博士生,从事桩基动力学理论与土工测试方法的研究. orcid.org/0000-0001-5244-4760. E-mail: gnauhszhao@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵爽
吴君涛
邱欣晨
王奎华
涂园

引用本文:

赵爽,吴君涛,邱欣晨,王奎华,涂园. 基于水平低应变法的高承台桩缺陷检测研究[J]. 浙江大学学报(工学版), 2021, 55(10): 1867-1876.

Shuang ZHAO,Jun-tao WU,Xin-chen QIU,Kui-hua WANG,Yuan TU. Study on defect detection of extended pile shaft under lateral low-strain integrity test. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1867-1876.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.008        https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1867

图 1  高承台单桩水平振动响应数值分析模型示意图
部件 密度/(kg·m?3 弹性模量/MPa 泊松比
2500 40000 0.15
1800 30 0.35
表 1  高承台单桩水平振动响应数值分析模型计算参数
图 2  激振力波形
图 3  基于水平振动的桩身缺陷深度预测算例
图 4  缺陷处反射波行程示意图
算例 h3 /m td /ms hpd /m |hpd ? h3| /m
算例1 0.50 3.8 0.57 0.07
算例2 5.50 7.8 5.90 0.40
算例3 0.80 5.6 0.80 0
算例4 8.00 11.6 8.50 0.50
表 2  预测深度和缺陷实际深度的对比
图 5  不同激振力作用时间下的桩身质点水平速度响应
图 6  高承台单桩水平低应变法模型试验示意图
部件 密度/(kg·m?3 弹性模量/MPa 泊松比
1 050 2 200 0.12
1 800 20 0.35
表 3  高承台单桩水平低应变法数值模型计算参数
图 7  完整桩桩身水平速度响应试验结果与数值模拟试验结果的对比
图 8  不同激振位置-接收位置组合下完整桩和缺陷桩桩身质点水平速度响应的对比
图 9  不同缺陷截面直径时的桩身质点水平速度响应
Dd /cm h3 /m td /ms hpd /m |hpd ? h3| /m
5.0 0.03
4.0 0.03 2.2 0.11 0.08
3.0 0.03 2.1 0.06 0.03
2.0 0.03 2.1 0.06 0.03
1.5 0.03 2.0 0.02 0.01
表 4  缺陷预测深度和实际深度的对比
图 10  不同缺陷高度时的桩身质点水平速度响应
s /cm h3 /m td /ms hpd /m |hpd ? h3| /m
3 0.03 2.2 0.11 0.08
5 0.03 2.0 0.02 0.01
10 0.03 2.0 0.02 0.01
20 0.03 2.0 0.02 0.01
50 0.03 2.1 0.06 0.03
表 5  计算深度和实际深度的对比
图 11  不同缺陷高度时的桩身质点水平速度响应
图 12  不同缺陷埋深时的桩身质点水平速度响应
h3 /m td /ms hpd /m |hpd ? h3| /m
0.03 2.0 0.02 0.01
0.46 2.9 0.45 0.01
0.80 3.6 0.79 0.01
表 6  计算深度和实际深度的对比
图 13  不同桩周土剪切波速时的桩身质点水平速度响应
1 中华人民共和国行业标准编写组. 建筑桩基技术规范: JGJ 94-2008 [S]. 北京: 中国建筑工业出版社, 2008.
2 陈凡. 基桩质量检测技术[M]. 北京: 中国建筑工业出版社, 2014.
3 王奎华, 谢康和, 曾国熙 有限长桩受迫振动问题解析解及其应用[J]. 岩土工程学报, 1997, 19 (6): 27- 35
WANG Kui-hua, XIE Kang-he, ZENG Guo-xi Analytical solution to vibration of finite length pile under exciting force and its application[J]. Chinese Journal of Geotechnical Engineering, 1997, 19 (6): 27- 35
doi: 10.3321/j.issn:1000-4548.1997.06.007
4 王奎华 成层广义Voigt地基中粘弹性桩纵向振动分析与应用[J]. 浙江大学学报: 工学版, 2002, 36 (5): 565- 571
WANG Kui-hua Analysis and application of longitudinal vibration of viscoelastic pile in layered generalized Voigt Foundation[J]. Journal of Zhejiang University: Engineering Science, 2002, 36 (5): 565- 571
5 王奎华, 谢康和 变截面阻抗桩受迫振动问题解析解及应用[J]. 土木工程学报, 1998, 31 (6): 56- 67
WANG Kui-hua, XIE Kang-he An analytical solution to force vibration of foundation pile under exciting force and its application[J]. China Civil Engineering Journal, 1998, 31 (6): 56- 67
6 吴君涛, 王奎华, 高柳, 等 考虑桩身材料阻尼的桩基纵向振动积分变换解及其应用[J]. 岩石力学与工程学报, 2017, 36 (9): 2305- 2312
WU Jun-tao, WANG Kui-hua, GAO Liu, et al Study on longitudinal vibration of a viscoelastic pile by integral transformation and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (9): 2305- 2312
7 EI NAGGAR M H Vertical and torsional soil reactions for radially inhomogeneous soil layer[J]. Structural Engineering and Mechanics, 2000, 10 (4): 299- 312
doi: 10.12989/sem.2000.10.4.299
8 吴君涛, 王奎华, 肖偲, 等 静钻根植工法下变截面管桩纵向振动特性分析[J]. 岩石力学与工程学报, 2018, 37 (4): 1030- 1040
WU Jun-tao, WANG Kui-hua, XIAO Si, et al Longitudinal vibration characteristics of static drill rooted tubular piles with variable section[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (4): 1030- 1040
9 WU J, WANG K, GAO L, et al Study on longitudinal vibration of a pile with variable sectional acoustic impedance by integral transformation[J]. Acta Geotechnica, 2019, 14 (6): 1857- 1870
doi: 10.1007/s11440-018-0732-8
10 陈凡, 王仁军 尺寸效应对基桩低应变完整性检测的影响[J]. 岩土工程学报, 1998, 20 (5): 92- 96
CHEN Fan, WANG Ren-jun Effect of size effect on low strain integrity test of pile[J]. Chinese Journal of Geotechnical Engineering, 1998, 20 (5): 92- 96
doi: 10.3321/j.issn:1000-4548.1998.05.021
11 吴斌杰, 王奎华, 童魏烽, 等 基桩完整性检测中的尺寸效应及桩身阻抗变化效应[J]. 岩石力学与工程学报, 2019, 38 (Supple.1): 3229- 3237
WU Bin-jie, WANG Kui-hua, TONG Wei-feng, et al Size effect and pile impedance variation in pile integrity test[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (Supple.1): 3229- 3237
12 DAVIS A G Nondestructive evaluation of existing deep foundations[J]. Journal of Performance of Constructed Facilities, 1995, 9 (1): 57- 74
doi: 10.1061/(ASCE)0887-3828(1995)9:1(57)
13 陈龙珠, 赵荣欣 旁孔透射波法确定桩底深度计算方法评价[J]. 地下空间与工程学报, 2010, 6 (1): 157- 161
CHEN Long-zhu, ZHAO Rong-xin On determination of pile length with parallel seismic testing for existing structure[J]. Chinese Journal of Underground Space and Engineering, 2010, 6 (1): 157- 161
14 吴君涛, 王奎华, 刘鑫, 等 缺陷桩周围成层土振动响应解析解及其在旁孔透射波法中的应用[J]. 岩石力学与工程学报, 2019, 38 (1): 203- 216
WU Jun-tao, WANG Kui-hua, LIU Xin, et al An analytical solution of dynamic responses of multi-layered soil around a defect pile and its application in parallel seismic method[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (1): 203- 216
15 WU J, WANG K, EI NAGGAR M H Dynamic response of a defect pile in layered soil subjected to longitudinal vibration in parallel seismic integrity testing[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 168- 178
doi: 10.1016/j.soildyn.2019.03.010
16 WU J, WANG K, EI NAGGAR M H Dynamic soil reactions around pile-fictitious soil pile coupled model and its application in parallel seismic method[J]. Computers and Geotechnics, 2019, 110: 44- 56
doi: 10.1016/j.compgeo.2019.02.011
17 WU Jun-tao, WANG Kui-hua, EI NAGGAR M H Half-space dynamic soil model excited by known longitudinal vibration of a defective pile[J]. Computers and Geotechnics, 2019, 112: 403- 412
doi: 10.1016/j.compgeo.2019.05.006
18 EI NAGGAR M H, NOVAK M Nonlinear lateral interaction in pile dynamics[J]. Soil Dynamics and Earthquake Engineering, 1995, 14 (3): 141- 157
19 MYLONAKIS G, GAZETAS G Lateral vibration and internal forces of grouped piles in layered soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (1): 16- 25
doi: 10.1061/(ASCE)1090-0241(1999)125:1(16)
20 ZHENG Chang-jie, LIU Han-long, DING Xuan-ming, et al Horizontal vibration of a large-diameter pipe pile in viscoelastic soil[J]. Mathematical Problems in Engineering, 2013, (4): 1- 13
21 龙丽丽. 不均匀土中非完整桩的横向振动问题[D]. 合肥: 合肥工业大学, 2010.
LONG Li-li. Lateral vibration problem of defective pile in non-homogeneous soil [D]. Hefei: Hefei University of Technology, 2010.
22 龙丽丽, 刘东甲, 蒋红 水平瞬态荷载下基桩的动力响应分析[J]. 合肥工业大学学报: 自然科学版, 2012, 35 (7): 951- 956
LONG Li-li, LIU Dong-jia, JIANG Hong Dynamic response of piles subjected to transient lateral loading[J]. Journal of Hefei University of Technology: Natural Science, 2012, 35 (7): 951- 956
23 龙丽丽, 刘东甲, 蒋红 Timoshenko梁模型下完整桩瞬态横向振动半解析解[J]. 合肥工业大学学报: 自然科学版, 2016, 39 (3): 368- 373
LONG Li-li, LIU Dong-jia, JIANG Hong Semi-analytical solution for transient lateral vibration of integrate piles based on Timoshenko beam model[J]. Journal of Hefei University of Technology: Natural Science, 2016, 39 (3): 368- 373
doi: 10.3969/j.issn.1003-5060.2016.03.017
24 WU J, EI NAGGAR M H, WANG K, et al Lateral vibration characteristics of an extended pile shaft under low-strain integrity test[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105812
doi: 10.1016/j.soildyn.2019.105812
25 王腾, 王奎华, 谢康和 成层土中桩的纵向振动理论研究及应用[J]. 土木工程学报, 2002, 35 (1): 83- 87
WANG Teng, WANG Kui-hua, XIE Kang-he Theoretical study and application of longitudinal vibration of pile in layered soil[J]. China Civil Engineering Journal, 2002, 35 (1): 83- 87
doi: 10.3321/j.issn:1000-131X.2002.01.017
[1] 陈杨波,伊国栋,张树有. 基于点云特征对比的曲面翘曲变形检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 81-88.
[2] 肖偲,王奎华,王孟波. 基于桩侧虚土桩模型的桩-桩芯土竖向动力响应[J]. 浙江大学学报(工学版), 2020, 54(8): 1593-1603.
[3] 叶刚,李毅波,马逐曦,成杰. 基于ViBe的端到端铝带表面缺陷检测识别方法[J]. 浙江大学学报(工学版), 2020, 54(10): 1906-1914.
[4] 秦钟伟,陈捷,洪荣晶,吴伟伟. 摩擦片表面缺陷的视觉显著性检测算法[J]. 浙江大学学报(工学版), 2019, 53(10): 1883-1891.
[5] 何闻,郑建毅,于梅,沈润杰,贾叔仕. 长行程水平向振动台的滑台防牵拉技术[J]. J4, 2011, 45(11): 1922-1926.