计算机技术 |
|
|
|
|
面向工业平稳/非平稳复杂系统的在线故障监测技术 |
孔祥玉( ),王晓兵,李红增,罗家宇 |
火箭军工程大学 导弹工程学院,陕西 西安 710000 |
|
On-line fault monitoring technology for industrial stationary/nonstationary complex system |
Xiang-yu KONG( ),Xiao-bing WANG,Hong-zeng LI,Jia-yu LUO |
Department of Missile Engineering, Rocket Force University of Engineering, Xi’an 710000, China |
引用本文:
孔祥玉,王晓兵,李红增,罗家宇. 面向工业平稳/非平稳复杂系统的在线故障监测技术[J]. 浙江大学学报(工学版), 2021, 55(10): 1856-1866.
Xiang-yu KONG,Xiao-bing WANG,Hong-zeng LI,Jia-yu LUO. On-line fault monitoring technology for industrial stationary/nonstationary complex system. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1856-1866.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.10.007
或
https://www.zjujournals.com/eng/CN/Y2021/V55/I10/1856
|
1 |
LIU J, WANG D, CHEN J Monitoring framework based on generalized tensor PCA for three-dimensional batch process data[J]. Industrial and Engineering Chemistry Research, 2020, 59 (22): 10493- 10508
doi: 10.1021/acs.iecr.9b06244
|
2 |
罗林, 苏宏业, 班岚 Dirichlet过程混合模型在非线性过程监控中的应用[J]. 浙江大学学报: 工学版, 2015, 49 (11): 2230- 2236 LUO Lin, SU Hong-ye, BAN Lan Nonparametric bayesian based on mixture of dirichlet process in application of fault detection[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (11): 2230- 2236
|
3 |
LI Z, YAN X Performance-driven ensemble ICA chemical process monitoring based on fault-relevant models[J]. Soft Computing, 2020, 24 (16): 12289- 12302
doi: 10.1007/s00500-020-04673-6
|
4 |
LI Z, YAN X Fault-relevant optimal ensemble ICA model for non-gaussian process monitoring[J]. IEEE Transactions on Control Systems Technology, 2020, 28 (6): 2581- 2590
doi: 10.1109/TCST.2019.2936793
|
5 |
ZHONG B, WANG J, ZHOU J L, et al Quality rela-ted statistical process monitoring method based on gl-obal and local partial least squares projection[J]. In-dustrial and Engineering Chemistry Research, 2016, 55 (6): 1609- 1622
doi: 10.1021/acs.iecr.5b02559
|
6 |
WU O, BOUASWAIG A, IMSLAND L, et al Camp-aign-based modeling for degradation evolution in bat-ch processes using a multiway partial least squares a-pproach[J]. Computers and Chemical Engineering, 2019, 128 (2): 117- 127
|
7 |
LIU H, YANG J, ZHANG Y, et al Monitoring of wastewater treatment processes using dynamic concurrent kernel partial least squares[J]. Process Safety and Environmental Protection, 2021, 147: 274- 282
doi: 10.1016/j.psep.2020.09.034
|
8 |
LI G, QIN S J, JI Y D Total PLS based contribution plots for fault diagnosis[J]. Acta Automatica Sinica, 2009, 35 (6): 759- 765
|
9 |
ZHOU D H, LI G, QIN S J Total projection to latent structures for process monitoring[J]. AiChE Journal, 2010, 56 (1): 168- 178
|
10 |
QIN S J, ZHANG Y Y Quality-relevant and process relevant fault monitoring with concurrent projection to latent structures[J]. AIChE Journal, 2013, 59 (2): 496- 504
doi: 10.1002/aic.13959
|
11 |
YIN S, DING S X, ZHANG P, et al Study on modifications of PLS approach for process monitoring[J]. IFAC Proceedings Volumes, 2011, 44 (1): 12389- 12394
doi: 10.3182/20110828-6-IT-1002.02876
|
12 |
YIN S, ZHU X P, KAYNAK O Improved PLS focused on key performance indictor related fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2015, 62 (3): 1651- 1658
doi: 10.1109/TIE.2014.2345331
|
13 |
WANG G, YIN S Quality-related fault detection approach based on orthogonal signal correction and modified PLS[J]. IEEE Transactions on Industrial Informatics, 2017, 11 (2): 398- 405
|
14 |
孙鹤. 数据驱动的复杂非平稳工业过程建模与监测[D]. 杭州: 浙江大学, 2018: 8-19. SUN He. Complex nonstationary industrial process modeling and monitoring based on data driven methods[D]. Hangzhou: Zhejiang University, 2018: 8-19.
|
15 |
CHEN Q, KRUGER U, LEUNG A Y T Cointegration testing method for monitoring nonstationary processes[J]. Industrial and Engineering Chemistry Research, 2009, 48 (7): 3533- 3543
doi: 10.1021/ie801611s
|
16 |
SUN H, ZHANG S M, ZHAO C H, et al A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information[J]. Industrial and Engineering Chemistry Research, 2017, 56 (24): 6993- 7008
doi: 10.1021/acs.iecr.7b00156
|
17 |
ZHAO C H, HUANG B A full condition monitoring method for non-stationary dynamic chemical processes with cointegration and slow feature analysis[J]. ALCHE Journal, 2018, 64 (5): 1662- 1681
doi: 10.1002/aic.16048
|
18 |
LIN Y, KRUGER U, CHEN Q Monitoring nonstationary dynamic systems using cointegration and common trends analysis[J]. Industrial and Engineering Chemistry Research, 2017, 56 (31): 8895- 8905
doi: 10.1021/acs.iecr.7b00011
|
19 |
孔祥玉, 曹泽豪, 安秋生, 等 偏最小二乘线性模型及其非线性动态扩展模型综述[J]. 控制与决策, 2018, 33 (9): 1537- 1548 KONG Xiang-yu, CAO Ze-hao, AN Qiu-sheng, et al Review of partial least squares linear models and their nonlinear dynamic expansion models[J]. Control and Decision, 2018, 33 (9): 1537- 1548
|
20 |
JOHANSEN S, JUSELIUS K Maximum likelihood estimation and inference on cointegration with applications to the demand for money[J]. Oxford Bulletin of Economics and Statistics, 1990, 52 (2): 169- 210
|
21 |
ZHAO C H, SUN H Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (6): 4749- 4758
doi: 10.1109/TIE.2018.2864703
|
22 |
TABRIZI A A, AL-BUGHARBEE H, TRENDAFILOVA I, et al A cointegration-based monitoring method for rolling bearings working in time-varying operational conditions[J]. Meccanica, 2017, 52 (4-5): 1201- 1217
doi: 10.1007/s11012-016-0451-x
|
23 |
WILMS I, CROUX C Forecasting using sparse cointegration[J]. International Journal of Forecasting, 2016, 32 (4): 1256- 1267
doi: 10.1016/j.ijforecast.2016.04.005
|
24 |
LI G, QIN S J, TAO Y Non-stationarity and cointegration tests for fault detection of dynamic processes[J]. IFAC Proceedings Volumes, 2014, 47 (3): 10616- 10621
doi: 10.3182/20140824-6-ZA-1003.00754
|
25 |
BIROL G, ÜNDEY C, CINAR A A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers and Chemical Engineering, 2002, 26 (11): 1553- 1565
doi: 10.1016/S0098-1354(02)00127-8
|
26 |
DOWNS J J, VOFEL E F A plant-wide industrial pr-ocess control problem[J]. Computers and Chemical Engineering, 1993, 17 (3): 245- 255
doi: 10.1016/0098-1354(93)80018-I
|
27 |
张成, 高宪文, 李元 基于k近邻主元得分差分的故障检测策略[J]. 自动化学报, 2020, 46 (10): 2229- 2238 ZHANG Cheng, GAO Xian-wen, LI Yuan Fault detection strategy based on principal component score difference of k nearest neighbors[J]. Acta Automatica Sinica, 2020, 46 (10): 2229- 2238
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|