计算机技术 |
|
|
|
|
采用动态残差图卷积的3D点云超分辨率 |
钟帆( ),柏正尧*( ) |
云南大学 信息学院,云南 昆明 650500 |
|
3D point cloud super-resolution with dynamic residual graph convolutional networks |
Fan ZHONG( ),Zheng-yao BAI*( ) |
School of Information Science and Engineering, Yunnan University, Kunming 650500, China |
1 |
YANG J, WRIGHT J, HUANG T S, et al Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19 (11): 2861- 2873
doi: 10.1109/TIP.2010.2050625
|
2 |
QIAO C, LI D, GUO Y, et al Evaluation and development of deep neural networks for image super-resolution in optical microscopy[J]. Nature Methods, 2021, 18 (2): 194- 202
doi: 10.1038/s41592-020-01048-5
|
3 |
段然, 周登文, 赵丽娟, 等 基于多尺度特征映射网络的图像超分辨率重建[J]. 浙江大学学报: 工学版, 2019, 53 (7): 1331- 1339 DUAN Ran, ZHOU Deng-Wen, ZHAO Li-Juan, et al Image super-resolution reconstruction based on multi-scale feature mapping network[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (7): 1331- 1339
|
4 |
DONG C, LOY C C, HE K, et al Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (2): 295- 307
|
5 |
CHEN Y, LIU L, PHONEVILAY V, et al Image super-resolution reconstruction based on feature map attention mechanism[J]. Applied Intelligence, 2021, (8): 1- 14
|
6 |
WU H, ZHANG J, HUANG K. Point cloud super resolution with adversarial residual graph networks [EB/OL]. [2019-08-06]. https://arxiv.org/pdf/1908.0211.pdf .
|
7 |
YU L, LI X, FU C W, et al. Pu-net: point cloud upsampling network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2790-2799.
|
8 |
LI R, LI X, FU C W, et al. Pu-gan: a point cloud upsampling adversarial network [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 7203-7212.
|
9 |
QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3d classification and segmentation [C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii: IEEE, 2017: 652-660.
|
10 |
LI R, LI X, HENG P A, et al. Point cloud upsampling via Disentangled Refinement [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Online: IEEE, 2021: 344-353.
|
11 |
QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space [C]// Proceedings of Neural Information Processing Systems. Long Beach: NIPS, 2017: 5099-5108.
|
12 |
彭秀平, 仝其胜, 林洪彬, 等 一种面向散乱点云语义分割的深度残差特征金字塔网络框架[J]. 自动化学报, 2021, 47 (12): 2831- 2840 PENG Xiu-Ping, TONG Qi-Sheng, LIN Hong-Bin, et al A deep residual-feature pyramid network for scattered point cloud semantic segmentation[J]. Acta Automatica Sinica, 2021, 47 (12): 2831- 2840
|
13 |
MATURANA D, SCHERER S. Voxnet: a 3d convolutional neural network for real-time object recognition [C]// Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 922-928.
|
14 |
MAO J, XUE Y, NIU M, et al. Voxel transformer for 3d object detection [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Online: IEEE, 2021: 3164-3173.
|
15 |
WANG G, XU G, WU Q, et al Two-stage point cloud super resolution with local interpolation and readjustment via outer-product neural network[J]. Journal of Systems Science and Complexity, 2021, 34 (1): 68- 82
doi: 10.1007/s11424-020-9266-x
|
16 |
SIMONOYSKY M, KOMODAKIS N. Dynamic edge-conditioned flters in convolutional neural networks on graphs [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 3693-3702.
|
17 |
TE G, HU W, ZHENG A, et al. Rgcnn: regularized graph cnn for point cloud segmentation [C]// Proceedings of the 26th ACM International Conference on Multimedia. Lisboa: ACM, 2018: 746-754.
|
18 |
QIAN G, ABUALSHOUR A, LI G, et al. Pu-gcn: point cloud upsampling using graph convolutional networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Online: IEEE, 2021: 11683-11692.
|
19 |
GUO M H, CAI J X, LIU Z N, et al Pct: point cloud transformer[J]. Computational Visual Media, 2021, 7 (2): 187- 199
doi: 10.1007/s41095-021-0229-5
|
20 |
YU X, RAO Y, WANG Z, et al. Pointr: diverse point cloud completion with geometry-aware transformers [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Online: IEEE, 2021: 12498-12507.
|
21 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas: IEEE, 2016: 770-778.
|
22 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2016-09-09]. https://arxiv.org/pdf/1609.02907.pdf.
|
23 |
LUO C, CHEN Y, WANG N, et al. Spectral feature transformation for person re-identification [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 4976-4985.
|
24 |
HU X, MU H, ZHANG X, et al. Meta-SR: a magnification-arbitrary network for super-resolution [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 1575-1584.
|
25 |
BUTT M A, MARAGOS P Optimum design of chamfer distance transforms[J]. IEEE Transactions on Image Processing, 1998, 7 (10): 1477- 1484
doi: 10.1109/83.718487
|
26 |
CUTURI M. Sinkhorn distances: lightspeed computation of optimal transport [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe: NIPS, 2013: 2292-2300.
|
27 |
YE S, CHEN D, HAN S, et al Meta-PU: an arbitrary-scale upsampling network for point cloud[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28 (9): 3206- 3218
doi: 10.1109/TVCG.2021.3058311
|
28 |
BOLTZ S, NIELSEN F, SOATTO S. Earth mover distance on superpixels [C]// IEEE International Conference on Image Processing. Hong Kong: IEEE, 2010: 4597-4600.
|
29 |
SOKOLOVA M, JAPKOWICZ N, SZPAKOWICZ S. Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation [C]// Australasian Joint Conference on Artificial Intelligence. Berlin: Springer, 2006: 1015-1021.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|