Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (5): 1017-1024    DOI: 10.3785/j.issn.1008-973X.2022.05.019
计算机与控制工程     
基于图信号处理的传染病传播预测方法
李文娟1(),邓洪高1,*(),马谋1,蒋俊正1,2
1. 桂林电子科技大学 信息与通信学院,广西壮族自治区 桂林 541004
2. 桂林电子科技大学 卫星导航定位与位置服务国家地方联合工程研究中心,广西壮族自治区 桂林 541004
Prediction method of infectious disease transmission based on graph signal processing
Wen-juan LI1(),Hong-gao DENG1,*(),Mou MA1,Jun-zheng JIANG1,2
1. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China
2. State and Local Joint Engineering Research Center for Satellite Navigation and Location Service, Guilin University of Electronic Technology, Guilin 541004, China
 全文: PDF(1308 KB)   HTML
摘要:

针对现有传染病传播预测模型存在未充分考虑数据的内在关联性的问题,采用图多项式-向量自回归(GP-VAR)模型对传染病的传播进行预测, 并提出新的用于模型参数估计的优化方法. 将传染病发病地区建模为图节点, 并根据地区间的距离信息和人群流动情况确定节点间的边及其权重, 以反映传染病传播过程中的空间关联性. 将不同时刻的感染疾病人数建模为时变图信号, 使用GP-VAR模型对时变图信号在图上的演变过程进行预测, 并设计一种最小二乘(LS)优化方法对GP-VAR模型的参数进行估计. 仿真实验结果表明, 与现有的预测方法相比,所提方法能够更好地考虑到数据在空间维的相关性和时间维的演变特性, 更加准确地刻画传染病的传播特性, 且具有普适性, 预测效果更好.

关键词: 传染病预测图信号处理时间序列时变图信号最小二乘    
Abstract:

The existing spread predicting models of infectious diseases have not sufficiently considered the intrinsic correlation of the data. To solve this problem, graph polynomial-vector autoregressive (GP-VAR) model was used to predict the spread of infectious diseases, and a new optimization method for estimating model parameters was proposed. The regions where infectious diseases occur were modeled as nodes on the graph, and edges and weights between nodes were determined by the distance information of the regions and the flow of people, so as to reflect the spatial relevance in the transmission process of infectious diseases. The number of cases at different times was modeled as the time-varying graph signal, the GP-VAR model was used to predict the evolution process of the time-varying graph signal on the graph, and a least squares (LS) optimization method was designed to estimate the parameters of the GP-VAR model. Experimental results show that the proposed method can better consider the correlation of data in spatial dimension and the evolution of data in time dimension, and characterize the transmission characteristics of infectious diseases more accurately, which has universality and better prediction effect compared with the existing prediction methods.

Key words: infectious disease prediction    graph signal processing    time series    time-varying graph signal    least squares
收稿日期: 2021-09-13 出版日期: 2022-05-31
CLC:  TN 911  
基金资助: 国家自然科学基金资助项目(62171146);广西创新驱动发展专项(桂科AA21077008);广西科技基地和人才专项(桂科AD21220112);广西自然科学杰出青年基金资助项目(2021GXNSFFA220004)
通讯作者: 邓洪高     E-mail: 20022201022@mails.guet.edu.cn;dhg@guet.edu.cn
作者简介: 李文娟(1999—),女,硕士生,从事图信号处理理论与应用研究. orcid.org/0000-0002-3386-3828. E-mail: 20022201022@mails.guet.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李文娟
邓洪高
马谋
蒋俊正

引用本文:

李文娟,邓洪高,马谋,蒋俊正. 基于图信号处理的传染病传播预测方法[J]. 浙江大学学报(工学版), 2022, 56(5): 1017-1024.

Wen-juan LI,Hong-gao DENG,Mou MA,Jun-zheng JIANG. Prediction method of infectious disease transmission based on graph signal processing. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1017-1024.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.05.019        https://www.zjujournals.com/eng/CN/Y2022/V56/I5/1017

图 1  社交网络图及图上信号
图 2  有向周期时间序列图
图 3  欧洲125个主要城市的连接图
图 4  德国412个地区的连接图
图 5  不同类型的传染病数据下本研究方法连续50 d的一步预测结果
图 6  不同方法在SI、SEIRS、COVID-19数据下的6步预测误差对比
图 7  不同参数下本研究方法的第5步预测误差对比
1 KHADDAJ S, CHRIEF H. Prevention and control of emerging infectious diseases in human populations [C]// Proceedings of 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science. Xuzhou: [s.n.], 2020: 341-344.
2 庞维庆, 何宁, 罗燕华, 等 基于数据融合的ABC-SVM社区疾病预测方法[J]. 浙江大学学报: 工学版, 2021, 55 (7): 1253- 1260+1326
PANG Wei-qing, HE Ning, LUO Yan-hua, et al ABC-SVM disease prediction method based on data fusion in community health care[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (7): 1253- 1260+1326
3 KERMACK W O, MCKENDRICK A G A A Contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 1927, 115 (772): 700- 721
4 GAO S, CHEN L, NIETO J J, et al Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J]. Vaccine, 2006, 24 (35/36): 6037- 6045
5 GOMEZ S, ARENAS A, BORGE-HOLTHOEFER J, et al Discrete-time Markov chain approach to contact-based disease spreading in complex networks[J]. Europhysics Letters, 2010, 89 (3): 38009
doi: 10.1209/0295-5075/89/38009
6 BENVENUTO D, GIOVANETTI M, VASSALLO L, et al Application of the ARIMA model on the COVID-2019 epidemic dataset[J]. Data in Brief, 2020, 29: 105340
doi: 10.1016/j.dib.2020.105340
7 余艳妮, 聂绍发, 廖青, 等 传染病预测及模型选择研究进展[J]. 公共卫生与预防医学, 2018, 29 (5): 89- 92
YU Yan-ni, NIE Shao-fa, LIAO Qing, et al Research progress on prediction and model selection of infectious diseases[J]. Journal of Public Health and Preventive Medicine, 2018, 29 (5): 89- 92
8 KIESHA P, YANG L, TIMOTHY W R, et al The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study[J]. The Lancet Public Health, 2020, 5 (5): 261- 270
doi: 10.1016/S2468-2667(20)30073-6
9 SANDRYHAILA A, MOURA J M Discrete signal processing on graphs[J]. IEEE Transactions on Signal Processing, 2013, 61 (7): 1644- 1656
doi: 10.1109/TSP.2013.2238935
10 杨杰, 蒋俊正 利用联合图模型的传感器网络数据修复方法[J]. 西安电子科技大学学报, 2020, 47 (1): 44- 51
YANG Jie, JIANG Jun-zheng Method for data recovery in the sensor network based on the joint graph model[J]. Journal of Xidian University, 2020, 47 (1): 44- 51
11 XUE X The contact process with semi-infected state on the complete graph[J]. Stochastic Analysis and Applications, 2018, 36 (2): 324- 340
doi: 10.1080/07362994.2017.1399802
12 BUCUR D, HOLME P Beyond ranking nodes: predicting epidemic outbreak sizes by network centralities[J]. PLOS Computational Biology, 2020, 16 (7): e1008052
doi: 10.1371/journal.pcbi.1008052
13 ISUFI E, LOUKAS A, PERRAUDIN N, et al Forecasting time series with VARMA recursions on graphs[J]. IEEE Transactions on Signal Processing, 2019, 67 (18): 4870- 4885
doi: 10.1109/TSP.2019.2929930
14 MEI J, MOUEA J Signal processing on graphs: causal modeling of unstructured data[J]. IEEE Transactions on Signal Processing, 2017, 65 (8): 2077- 2092
doi: 10.1109/TSP.2016.2634543
15 NOWZARI C, PRECIADO V M, PAPPAS G J Analysis and control of epidemics: a survey of spreading processes on complex networks[J]. IEEE Control Systems, 2016, 36 (1): 26- 46
doi: 10.1109/MCS.2015.2495000
16 PUSCHEL M, MOURA J Algebraic signal processing theory: foundation and 1-D time[J]. IEEE Transactions on Signal Processing, 2008, 56 (8): 3572- 3585
doi: 10.1109/TSP.2008.925261
17 SANDRYHAILA A, MOURA J Discrete signal processing on graphs: frequency analysis[J]. IEEE Transactions on Signal Processing, 2014, 62 (12): 3042- 3054
doi: 10.1109/TSP.2014.2321121
18 JIANG J, CHENG C, SUN Q Nonsubsampled graph filter banks: theory and distributed algorithms[J]. IEEE Transactions on Signal Processing, 2019, 67 (15): 3938- 3953
doi: 10.1109/TSP.2019.2922160
19 TAY D B, JIANG J Time-varying graph signal denoising via median filters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68 (3): 1053- 1057
doi: 10.1109/TCSII.2020.3017800
20 JIANG J, FENG H, TAY D B, et al Theory and design of joint time-vertex nonsubsampled filter banks[J]. IEEE Transactions on Signal Processing, 2021, 69: 1968- 1982
doi: 10.1109/TSP.2021.3064984
21 GRASSI F, LOUKAS A, PERRAUDIN N, et al A time-vertex signal processing framework: scalable processing and meaningful representations for time-series on graphs[J]. IEEE Transactions on Signal Processing, 2018, 66 (3): 817- 829
doi: 10.1109/TSP.2017.2775589
22 JIANG J, TAY D B, SUN Q, et al Recovery of time-varying graph signals via distributed algorithms on regularized problems[J]. IEEE Transactions on Signal and Information Processing over Networks, 2020, 6: 540- 555
doi: 10.1109/TSIPN.2020.3010613
[1] 姚禹,张志厚,石泽玉,刘鹏飞,赵思为,张天一,赵明浩. 基于支持向量回归的一维频率域航空电磁反演[J]. 浙江大学学报(工学版), 2022, 56(1): 202-212.
[2] 张楠,董红召,佘翊妮. 公交专用道条件下公交车辆轨迹的Seq2Seq预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1482-1489.
[3] 朱宝强,王述红,张泽,王鹏宇,董福瑞. 基于时间序列与DEGWO-SVR模型的隧道变形预测方法[J]. 浙江大学学报(工学版), 2021, 55(12): 2275-2285.
[4] 陶成飞,周昊,胡流斌,刘子华,岑可法. 液雾燃烧的热声不稳定动态特性[J]. 浙江大学学报(工学版), 2021, 55(11): 2108-2114.
[5] 陈功,郑春华,翁献明,HAMEEDBaustani,胡鸿昊,马晓宇,柳景青. 基于多水文数据关联分析的雨水口异常诊断[J]. 浙江大学学报(工学版), 2021, 55(1): 55-61.
[6] 展鹏,陈琳,曹鲁慧,李学庆. 基于特征符号表示的网络异常流量检测算法[J]. 浙江大学学报(工学版), 2020, 54(7): 1281-1288.
[7] 王晨霖,杨洁,居文军,顾复,陈芨熙,纪杨建. 基于智能家电的短期电力负荷预测与削峰填谷优化[J]. 浙江大学学报(工学版), 2020, 54(7): 1418-1424.
[8] 粟序明,方成刚,潘裕斌,吴伟伟,李亚萍,朱浪. 变照度下的视觉测量系统误差建模[J]. 浙江大学学报(工学版), 2020, 54(10): 1929-1935.
[9] 李竟成,吴越,胡斯登,石健将. 基于递推最小二乘法与核密度估计的同步整流Boost变换器回流功率抑制[J]. 浙江大学学报(工学版), 2020, 54(1): 169-177.
[10] 汪子龙,王柱,於志文,郭斌,周兴社. 多源数据跨国人口迁移预测[J]. 浙江大学学报(工学版), 2019, 53(9): 1759-1767.
[11] 李啸晨,苏宏业,邵寒山,谢磊. 基于梯度信息的实时优化与控制集成策略[J]. 浙江大学学报(工学版), 2019, 53(5): 843-851.
[12] 周朝君,黄明辉,陆新江. 基于低维约束嵌入的分布参数系统建模[J]. 浙江大学学报(工学版), 2019, 53(11): 2154-2162.
[13] 孙颖,胡艳香,张雪英,段淑斐. 面向情感语音识别的情感维度PAD预测[J]. 浙江大学学报(工学版), 2019, 53(10): 2041-2048.
[14] 吴晨睿, 张树有, 何再兴. 基于梯度分类的复杂背景椭圆快速检测方法[J]. 浙江大学学报(工学版), 2018, 52(5): 943-950.
[15] 李麟玮, 吴益平, 苗发盛. 基于灰狼支持向量机的非等时距滑坡位移预测[J]. 浙江大学学报(工学版), 2018, 52(10): 1998-2006.