Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (5): 943-950    DOI: 10.3785/j.issn.1008-973X.2018.05.014
机械与能源工程     
基于梯度分类的复杂背景椭圆快速检测方法
吴晨睿, 张树有, 何再兴
浙江大学 流体传动及控制国家重点实验室, 浙江 杭州 310027
Fast detection method for ellipse in complex background based on gradient grouping
WU Chen-rui, ZHANG Shu-you, HE Zai-xing
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF(5273 KB)   HTML
摘要:

针对复杂背景下椭圆特征由于重叠、缺失、嵌套等原因导致的检测效率低、误检率高的问题,提出基于梯度分类与多边形辨识的椭圆快速检测方法. 该方法通过边缘检测算子对采集的图像进行预处理,获取图像边缘的梯度信息. 根据边缘灰度梯度与凹凸性将边缘线分为4类圆弧特征,通过对4类圆弧特征的聚类初步确定备选的椭圆集合. 利用椭圆内包多边形为凸多边形的特点,对候选椭圆集合进行快速辨识. 应用非迭代几何最小二乘法拟合椭圆参数,通过椭圆残差判定与椭圆的去伪过程,获得最终的椭圆特征. 实验结果表明,该方法在椭圆检测效率与准确性上较经典算法均有提升.

Abstract:

A novel ellipse detection method based on gradient clustering and convex polygon was proposed in order to solve the problem of slow detecting speed, low accuracy and high error rates of ellipse detection in complex background. Edge information including location and orientation was extracted through Canny operator in image preprocessing. Edges were clustered into four categories according to their gradient orientation and convexity. Unqualified ellipse tribes were quickly filtered according to convex polygon property. A non-iterative geometric least square method was used to fit the ellipse. Ellipses with small fitting errors were confirmed to be the final ellipse features in complex background. Experimental results show that the proposed method performs better than the classical algorithm in both recognition accuracy and calculating time.

收稿日期: 2017-04-15 出版日期: 2018-11-07
CLC:  TP391.4  
基金资助:

国家自然科学基金资助项目(51275458);国家“863”高技术研究发展计划资助项目(2013AA041303).

通讯作者: 张树有,男,教授,博导.     E-mail: zsy@zju.edu.cn
作者简介: 吴晨睿(1989-),男,博士生,从事产品数字化设计、制造业信息化关键技术等方向.orcid.org/0000-0002-8264-471X.E-mail:wcy636489@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

吴晨睿, 张树有, 何再兴. 基于梯度分类的复杂背景椭圆快速检测方法[J]. 浙江大学学报(工学版), 2018, 52(5): 943-950.

WU Chen-rui, ZHANG Shu-you, HE Zai-xing. Fast detection method for ellipse in complex background based on gradient grouping. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 943-950.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.05.014        http://www.zjujournals.com/eng/CN/Y2018/V52/I5/943

[1] HUTTER M, BREWER N. Matching 2-D ellipses to 3-D circles with application to vehicle pose identification[C]//Image and Vision Computing New Zealand. Wellingtaon:IEEE, 2009:153-158.
[2] SOETEDJO A, YAMADA K. Fast and Robust Traffic Sign Detection[C]//IEEE International Conference on Systems, Man and Cybernetics. Waikoloa:IEEE, 2006:1341-1346.
[3] KIM H S, KANG W S, SHIN J I, et al. Face detection using template matching and ellipse fitting[J]. Ieice Transactions on Information & Systems, 2000, 83(11):2008-2011.
[4] FENG X, FANG C, DING X, et al. Iris localization with dual coarse-to-fine Strategy[C]//International Conference on Pattern Recognition. HongKong:IEEE, 2006:553-556.
[5] 廖苗,赵于前,曾业战,等.基于支持向量机和椭圆拟合的细胞图像自动分割[J].浙江大学学报:工学版.2017,51(4):722-728. LIAO Miao, ZHAO Yu-qian, ZENG Ye-zhan, et al. Automatic segmentation for cell images based on support vectot machine and ellipse fitting[J]. Journal of Zhejiang University:Engineering Science, 2017,51(4):722-728.
[6] FELZENSZWALB P F, HUTTENLOCHER D P. Pictorial structures for object recognition[J]. International Journal of Computer Vision, 2005, 61(1):55-79.
[7] MCLAUGHLIN R A. Randomized hough transform:improved ellipse detection with comparison[J]. Pattern Recognition Letters, 1998, 19(3/4):299-305.
[8] CHENG Z, LIU Y. Efficient technique for ellipse detection using restricted randomized Hough transform[C]//International Conference on Information Technology:Coding and Computing. Las Vegas:IEEE, 2004(2):714-718.
[9] LU W, TAN J. Detection of incomplete ellipse in images with strong noise by iterative randomized Hough transform (IRHT)[J]. Pattern Recognition, 2008,41(4):1268-1279.
[10] 邹荣,赵稼宸,凌俊,等.基于Hough投票空间的椭圆图像特征亚像素提取方法[J].光学技术.2016,42(2):141-145. ZOU Rong, ZHAO Jia-chen, Lin Jun, et al. Sub-pixel ellipse feature extraction method based on Hough voting space[J]. Optical Technique, 2016,42(2):141-145.
[11] FITZGIBBON A, PILU M, FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 21(5):476-480.
[12] LIU Z Y, QIAO H. Multiple ellipses detection in noisy environments:A hierarchical approach[J]. Pattern Recognition, 2009, 42(11):2421-2433.
[13] MAINI E S. Enhanced direct least square fitting of ellipses[J]. International Journal of Pattern Recognition & Artificial Intelligence, 2012, 20(6):939-954.
[14] PRASAD D K, LEUNG M K H, CHO S Y. Edge curvature and convexity based ellipse detection method[J]. Pattern Recognition, 2012, 45(9):3204-3221.
[15] 吴尧锋,王文,卢科青,等.边界聚类椭圆快速检测方法[J].浙江大学学报:工学版.2016,50(3):405-411. WU Xiao-feng, WANG Wen, LU Ke-qing, et al.Fast ellipse detection based on edge grouping[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(3):405-411.
[16] CHEN S, XIA R, ZHAO J, et al. A hybrid method for ellipse detection in industrial images[J]. Pattern Recognition, 2017, 68:82-98.
[17] MEDINA-CARNICER R, OZ-SALINAS R, YEGUAS-BOLIVAR E, et al. A novel method to look for the hysteresis thresholds for the Canny edge detector[J]. Pattern Recognition, 2011, 44(6):1201-1211.
[18] CHATBRI H, KAMEYAMA K. Using scale space filtering to make thinning algorithms robust against noise in sketch images[J]. Pattern Recognition Letters. 2014, 42(6):1-10.
[19] PRASAD D K, LEUNG M K H, CHAI Q. ElliFit:An unconstrained, non-iterative, least squares based geometric Ellipse Fitting method[J]. Pattern Recognition, 2012, 46(5):1449-1465.
[20] AHN S J, RAUH W, WARNECKE H J, et al. Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola[J]. Pattern Recognition, 2001, 34(12):2283-2303.

[1] 郑洲, 张学昌, 郑四鸣, 施岳定. 基于区域增长与统一化水平集的CT肝脏图像分割[J]. 浙江大学学报(工学版), 2018, 52(12): 2382-2396.
[2] 孙朋朋, 赵祥模, 徐志刚, 闵海根. 基于3D激光雷达城市道路边界鲁棒检测算法[J]. 浙江大学学报(工学版), 2018, 52(3): 504-514.
[3] 鲁晓卉, 王进, 陆国栋, 张东亮. 采用多重特征蒙板的人像皮肤美化技术[J]. 浙江大学学报(工学版), 2017, 51(12): 2299-2310.
[4] 蔡晋辉, 张光新, 才辉. 基于连通掩模的重构开算子及应用[J]. J4, 2010, 44(4): 675-680.
[5] 王宣银, 梁冬泰. 基于多元图像分析的表面缺陷检测算法[J]. J4, 2010, 44(3): 448-452.
[6] 孙志海, 孔万增, 朱善安. 视频目标定位的减法聚类改进算法[J]. J4, 2010, 44(3): 458-462.
[7] 毛锋, 张树有, 黄长林. 图像散布图和小波多分辨分析的模具异物检测[J]. J4, 2009, 43(10): 1749-1756.
[8] 范翔, 夏顺仁. 基于特征的显微图像全自动拼接[J]. J4, 2009, 43(7): 1182-1186.
[9] 陈成, 庄越挺, 肖俊. 相机运动条件下的视频前景提取[J]. J4, 2009, 43(6): 975-977.
[10] 徐舒畅, 张三元, 张引. 利用颜色模拟估算皮肤色素浓度[J]. J4, 2009, 43(6): 983-986.
[11] 张冬梅, 刘利刚. 基于角度滤波的平面图形光顺算法[J]. J4, 2009, 43(6): 1042-1046.
[12] 陈硕, 张锋, 沈模卫. 基于同时亮度对比现象的亮度感知用户模型[J]. J4, 2009, 43(5): 822-826.
[13] 张赞超, 夏顺仁. 全自动尿液图像识别技术[J]. J4, 2009, 43(5): 832-838.
[14] 程邦胜, 唐孝威. Harris尺度不变性关键点检测子的研究[J]. J4, 2009, 43(5): 855-859.