Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (1): 202-212    DOI: 10.3785/j.issn.1008-973X.2022.01.023
航空航天技术     
基于支持向量回归的一维频率域航空电磁反演
姚禹1(),张志厚1,*(),石泽玉1,刘鹏飞1,赵思为2,张天一1,赵明浩1
1. 西南交通大学 地球科学与环境工程学院,四川 成都 611756
2. 中铁二院成都地勘岩土工程有限责任公司,四川 成都 610031
Airborne electromagnetic inversion in one-dimensional frequency-domain based on support vector regression
Yu YAO1(),Zhi-hou ZHANG1,*(),Ze-yu SHI1,Peng-fei LIU1,Si-wei ZHAO2,Tian-yi ZHANG1,Ming-hao ZHAO1
1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
2. China Railway Eryuan Geotechnical Engineering Limited Company, Chengdu 610031, China
 全文: PDF(1203 KB)   HTML
摘要:

为了提高一维频率域航空电磁的反演精度,将机器学习方法应用于航空电磁数据的反演中,提出基于多输出最小二乘支持向量回归(MLS-SVR)的一维频率域航空电磁端到端反演方法. 对不同地电模型进行正演计算,获得样本数据集;搭建MLS-SVR模型框架,输入端为归一化后的垂直磁场分量,输出端为地电模型参数;利用网格寻优和K-折交叉验证进行调参;利用MLS-SVR模型进行反演. 试验结果表明,利用MLS-SVR可以准确地反演出各地电模型参数,与单输出支持向量回归(S-SVR)和多输出支持向量回归(M-SVR)算法相比,该反演方法的精度更高,实测数据反演表明了该方法的有效性.

关键词: 航空电磁一维频率域反演多输出端到端最小二乘支持向量机    
Abstract:

The machine learning method was applied to the inversion of airborne electromagnetic data in order to improve the accuracy of airborne electromagnetic inversion in one-dimensional frequency-domain. An end-to-end inversion method of one-dimensional frequency-domain airborne electromagnetic data was proposed based on multiple-output least square support vector regression (MLS-SVR). Forward calculations of different geological models were conducted to obtain sample data set. The framework of MLS-SVR model was constructed. The input end was normalized vertical magnetic field component, and the output end was geological parameters. Then the grid-search method and the K-fold cross-validation method were applied to search for the best parameters of the MLS-SVR model. The parameters of geological model were predicted via MLS-SVR. The experimental results show that the geological parameters can be accurately predicted with MLS-SVR. MLS-SVR has the advantage of high-precision compared with single support vector regression (S-SVR) and multiple-output support vector regression (M-SVR). The inversion of the measured data shows the effectiveness of the method.

Key words: airborne electromagnetic    one-dimensional frequency-domain inversion    multiple output    end-to-end    least square support vector machine
收稿日期: 2021-02-03 出版日期: 2022-01-05
CLC:  P 631  
基金资助: 四川省科技厅计划资助项目(2019YFG0460,2020YFG303,2021YJ0031);国家重点研发计划资助项目(2018YFC1505401);中国中铁股份有限公司科技研究开发计划资助项目(CZ01-重点-05)
通讯作者: 张志厚     E-mail: 1298170964@qq.com;logicprimer@163.com
作者简介: 姚禹(1997—),男,硕士生,从事基于机器学习的航空电磁数据处理研究. orcid.org/0000-0002-7732-7111. E-mail: 1298170964@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
姚禹
张志厚
石泽玉
刘鹏飞
赵思为
张天一
赵明浩

引用本文:

姚禹,张志厚,石泽玉,刘鹏飞,赵思为,张天一,赵明浩. 基于支持向量回归的一维频率域航空电磁反演[J]. 浙江大学学报(工学版), 2022, 56(1): 202-212.

Yu YAO,Zhi-hou ZHANG,Ze-yu SHI,Peng-fei LIU,Si-wei ZHAO,Tian-yi ZHANG,Ming-hao ZHAO. Airborne electromagnetic inversion in one-dimensional frequency-domain based on support vector regression. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 202-212.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.01.023        https://www.zjujournals.com/eng/CN/Y2022/V56/I1/202

图 1  固定翼频率域航空电磁数据采集示意图
图 2  通过高斯径向基函数将数据集映射至高维空间
算法 RMSE
$ \mathop \rho \nolimits_1 $ $ \mathop \rho \nolimits_2 $ $ \mathop h\nolimits_1 $
S-SVR 1.36 6.02 4.91
M-SVR 2.12 4.15 3.40
MLS-SVR 1.87 3.81 2.98
表 1  最优参数对应的地电参数RMSE
样本
序号
理论值 S-SVR M-SVR MLS-SVR
$ \mathop \rho \nolimits_1 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop \rho \nolimits_2 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m $ \mathop \rho \nolimits_1 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop \rho \nolimits_2 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m $ \mathop \rho \nolimits_1 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop \rho \nolimits_2 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m $ \mathop \rho \nolimits_1 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop \rho \nolimits_2 $/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m
1 450 800 120 443.59 733.92 127.25 435.77 763.59 114.64 437.50 766.28 116.56
2 700 300 90 712.68 323.52 84.25 721.26 313.92 86.42 719.74 311.50 84.96
3 300 850 135 307.43 780.45 126.34 315.78 806.77 130.26 312.91 815.14 129.35
4 800 450 75 814.91 410.32 70.02 773.95 429.66 73.33 778.90 433.25 72.59
5 550 750 45 540.66 697.64 40.30 532.74 725.71 43.66 535.42 727.57 44.01
表 2  2层模型5组数据不同方法的反演结果对比
反演
方法
相对误差/% 平均值
1 2 3 4 5
S-SVR 5.33 5.35 5.69 5.77 6.37 5.70
M-SVR 4.06 3.89 4.65 3.33 3.12 3.81
MLS-SVR 3.29 4.08 4.19 3.19 2.61 3.47
表 3  2层模型5组数据不同方法的反演相对误差对比
图 3  2层理论模型不同方法的反演结果对比
算法 RMSE
$ {\rho _{\text{1}}} $ $ \rho {}_{\text{2}} $ $ {\rho _{\text{3}}} $ $ \mathop h\nolimits_1 $ $ \mathop h\nolimits_2 $
S-SVR 1.89 7.85 8.95 5.75 8.39
M-SVR 2.54 5.70 7.40 4.52 6.14
MLS-SVR 2.13 5.41 7.11 3.85 5.89
表 4  各参数RMSE
样本序号 理论值 MLS-SVR反演值
$\;{\rho _{\text{1} } }$/ $(\Omega \cdot {\text{m)}}$ $\;{\rho _{\text{2} } }$/ $(\Omega \cdot {\text{m)}}$ $\;{\rho _{\text{3} } }$/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m $ \mathop h\nolimits_2 $/m $\;{\rho _{\text{1} } }$/ $(\Omega \cdot {\text{m)}}$ $\;{\rho _{\text{2} } }$/ $(\Omega \cdot {\text{m)}}$ $\; {\rho _{\text{3} } }$/ $(\Omega \cdot {\text{m)}}$ $ \mathop h\nolimits_1 $/m $ {h_2} $/m
1 150 600 400 45 75 155.67 624.09 375.66 43.07 69.33
2 200 400 600 75 30 193.96 374.77 560.14 71.66 27.96
3 800 450 600 90 30 830.16 428.69 568.43 95.55 32.43
4 700 400 200 45 45 667.45 426.08 214.88 42.86 48.01
5 800 350 700 60 75 834.56 369.25 749.94 63.22 69.91
表 5  3层模型的MLS-SVR反演结果
反演方法 相对误差/% 平均值
1 2 3 4 5
S-SVR 6.49 7.54 7.66 8.01 7.09 7.36
M-SVR 5.88 6.01 5.19 6.44 5.91 6.14
MLS-SVR 5.14 5.44 5.61 6.14 5.82 5.63
表 6  3层模型5组数据各反演方法的相对误差
图 4  3层理论模型不同方法的反演结果对比
图 5  2种5层理论模型MLS-SVR反演结果
序号 相对误差/%
无噪声 3%噪声 5%噪声
1 3.84 4.60 4.90
2 4.01 5.29 5.71
3 3.33 4.78 5.49
4 2.86 4.15 4.93
5 4.44 5.17 5.77
6 5.51 7.03 8.77
7 5.85 6.96 9.01
8 6.04 7.19 8.61
9 6.41 6.99 8.83
10 6.23 7.25 9.21
平均值 4.85 5.94 7.12
表 7  无噪声数据与含3%、5%高斯随机噪声数据反演相对误差对比
图 6  实测数据Occam反演方法
图 7  实测数据Occam反演方法、SVD反演方法结果与MLS-SVR反演方法结果对比图
1 FOUNTAIN D Airborne electromagnetic system: 50 years of development[J]. Exploration Geophysics, 1998, 29 (2): 1- 11
2 JAYSAVAL P, ROBINSON J L, JOHNSON T C Stratigraphic identification with airborne electromagnetic methods at the Hanford Site, Washington[J]. Journal of Applied Geophysics, 2021, 192: 104398- 104408
doi: 10.1016/j.jappgeo.2021.104398
3 SIEMON B, IBS-VON SEHT M, FRANK S Airborne electromagnetic and radiometric peat thickness mapping of a bog in Northwest Germany (Ahlen-Falkenberger Moor)[J]. Remote Sensing, 2020, 12 (2): 203- 226
doi: 10.3390/rs12020203
4 SU Ben-yu, RAO Rong-fu, LI Zhi-xiong, et al Detecting permafrost in plateau and mountainous areas by airborne transient electromagnetic sensing[J]. Electronics, 2020, 9 (8): 1229- 1240
doi: 10.3390/electronics9081229
5 KONÉ A Y, NASR I H, TRAORÉ B, et al Geophysical contributions to gold exploration in Western Mali according to airborne electromagnetic data interpretations[J]. Minerals, 2021, 11 (2): 126- 140
doi: 10.3390/min11020126
6 SIEMON B, IBS-VON SEHT M, STEUER A, et al Airborne electromagnetic, magnetic, and radiometric surveys at the German North Sea coast applied to groundwater and soil investigations[J]. Remote Sensing, 2020, 12 (10): 1629- 1653
doi: 10.3390/rs12101629
7 KING J, OUDE ESSINK G, KARAOLIS M, et al Quantifying geophysical inversion uncertainty using airborne frequency domain electromagnetic data: applied at the province of Zeeland, the Netherlands[J]. Water Resources Research, 2018, 54 (10): 8420- 8441
doi: 10.1029/2018WR023165
8 SAINT-VINCENT P M B, SAMS III J I, HAMMACK R W, et al Identifying abandoned well sites using database records and aeromagnetic surveys[J]. Environmental Science and Technology, 2020, 54 (13): 8300- 8309
doi: 10.1021/acs.est.0c00044
9 BARANWAL V C, RØNNING J S. Airborne geophysical surveys and their integrated interpretation [M]//Advances in modeling and interpretation in near surface geophysics. Cham: Springer, 2020: 377-400.
10 殷长春, 张博, 刘云鹤, 等 航空电磁勘查技术发展现状及展望[J]. 地球物理学报, 2015, 58 (8): 2637- 2653
YIN Chang-chun, ZHANG Bo, LIU Yun-he, et al Review on airborne EM technology and developments[J]. Chinese Journal of Geophysics, 2015, 58 (8): 2637- 2653
11 SENGPIEL K P Approximate inversion of airborne EM data from a multi-layered ground[J]. Geophysical Prospecting, 2006, 36 (4): 446- 459
12 周道卿 频率域航空电磁数据的质心深度近似反演[J]. 物探与化探, 2007, 31 (3): 242- 244
ZHOU Dao-qing Inversion of FAEM data with the centroid depth theory[J]. Geophysical and Geochemical Exploration, 2007, 31 (3): 242- 244
doi: 10.3969/j.issn.1000-8918.2007.03.015
13 MACNAE J C, SMITH R, POLZER B D, et al Conductivity-depth imaging of airborne electromagnetic step-response data[J]. Geophysics, 1991, 56 (1): 102- 114
doi: 10.1190/1.1442945
14 朱凯光, 李冰冰, 王凌群, 等 固定翼电磁数据双分量联合电导率深度成像[J]. 吉林大学学报: 地球科学版, 2015, 45 (6): 276- 282
ZHU Kai-guang, LI Bing-bing, WANG Ling-qun, et al Conductivity-depth imaging of fixed-wing airborne electromagnetic data[J]. Journal of Jilin University: Earth Science Edition, 2015, 45 (6): 276- 282
15 ZHENG He-liang, FU Jian-long, MEI Tao, et al. Learning multi-attention convolutional neural network for fine-grained image recognition [C]// 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5209-5217.
16 RIZVI S, CAO Jie, ZHANG Kai-yu, et al DeepGhost: real-time computational ghost imaging via deep learning[J]. Scientific Reports, 2020, 10 (1): 1- 9
doi: 10.1038/s41598-019-56847-4
17 GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks [C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 6645-6649.
18 BHATT H S, SINGH R, VATSA M, et al Improving cross-resolution face matching using ensemble-based co-transfer learning[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2014, 23 (12): 5654- 5669
doi: 10.1109/TIP.2014.2362658
19 廖晓龙, 张志厚, 范祥泰, 等 基于改进粒子群深度神经网络的频率域航空电磁数据反演[J]. 中南大学学报: 自然科学版, 2020, 51 (8): 2162- 2173
LIAO Xiao-long, ZHANG Zhi-hou, FAN Xiang-tai, et al Frequency domain airborne EM inversion based on improved particle swarm depth neural network[J]. Journal of Central South University: Science and Technology, 2020, 51 (8): 2162- 2173
20 AHL A Automatic 1D inversion of multifrequency airborne electromagnetic data with artificial neural networks: discussion and a case study[J]. Geophysical Prospecting, 2010, 51 (2): 89- 98
21 PUZYREV V, SWIDINSKY A Inversion of 1D frequency-and time-domain electromagnetic data with convolutional neural networks[J]. Computers and Geosciences, 2020, 149: 104681- 104690
22 张志厚, 廖晓龙, 曹云勇, 等 基于深度学习的重力异常与重力梯度异常联合反演[J]. 地球物理学报, 2021, 64 (4): 1435- 1452
ZHANG Zhi-hou, LIAO Xiao-long, CAO Yun-yong, et al Joint gravity and gravity gradient inversion based on deep learning[J]. Chinese Journal of Geophysics, 2021, 64 (4): 1435- 1452
doi: 10.6038/cjg2021O0151
23 VAPNIK V N. Statistical learning theory [M]. New York: Wiley, 1998.
24 GHEZELBASH R, MAGHSOUDI A, CARRANZA E J M Performance evaluation of RBF- and SVM-based machine learning algorithms for predictive mineral prospectivity modeling: integration of S-A multifractal model and mineralization controls[J]. Earth Science Informatics, 2019, 12 (3): 277- 293
doi: 10.1007/s12145-018-00377-6
25 钟仪华, 李榕 基于主成分分析的最小二乘支持向量机岩性识别方法[J]. 测井技术, 2009, 33 (5): 425- 429
ZHONG Yi-hua, LI Rong Application of principle component analysis and least square support vector machine to lithology identification[J]. Well Logging Technology, 2009, 33 (5): 425- 429
doi: 10.3969/j.issn.1004-1338.2009.05.005
26 LI Mo, LI Yue, WU Ning, et al Desert seismic random noise reduction framework based on improved PSO–SVM[J]. Acta Geodaetica et Geophysica, 2020, 55 (1): 101- 117
doi: 10.1007/s40328-019-00283-3
27 LI Zhong-xiao Adaptive multiple subtraction based on support vector regression[J]. Geophysics, 2019, 85 (1): 1- 52
28 唐长江. 时间域航空电磁数据SVM反演方法[D]. 成都: 成都理工大学, 2017.
TANG Chang-jiang. SVM inversion method for time domain airborne electromagnetic data [D]. Chengdu: Chengdu University of Technology, 2017.
29 李军峰. 固定翼频率域航空电磁系统测量技术研究[D]. 北京: 中国地质大学, 2010.
LI Jun-feng. A study on measuring technology of fix-wing frequency domain airborne electromagnetic system [D]. Beijing: China University of Geosciences, 2010.
30 纳比吉安. 勘查地球物理电磁法[M]. 赵经详, 译. 北京: 地质出版社, 1992: 195−200.
31 殷长春, 齐彦福, 刘云鹤, 等 频率域航空电磁数据变维数贝叶斯反演研究[J].  地球物理学报, 2014, 57 (9): 2971- 2980
YIN Chang-chun, QI Yan-fu, LIU Yun-he, et al Review on airborne EM technology and developments[J]. Chinese Journal of Geophysics, 2014, 57 (9): 2971- 2980
32 ZHANG Zhe, JIN Gu-min, LI Jian-xun Penalty boundary sequential convex programming algorithm for non-convex optimal control problems[J]. ISA Transactions, 2018, 72: 229- 244
doi: 10.1016/j.isatra.2017.09.014
33 SUYKENS J A K, VANDEWALLE J Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9 (3): 293- 300
doi: 10.1023/A:1018628609742
34 TUIA D, VERRELST J, ALONSO L, et al Multioutput support vector regression for remote sensing biophysical parameter estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8 (4): 804- 808
doi: 10.1109/LGRS.2011.2109934
35 XU Shuo, AN Xin, QIAO Xiao-dong, et al Multi-output least-squares support vector regression machines[J]. Pattern Recognition Letters, 2013, 34 (9): 1078- 1084
doi: 10.1016/j.patrec.2013.01.015
36 HU Yue, GILLILAND E, PENG Jing-lin, et al. Applying an ensemble support vector machine (SVM) to lithofacies prediction in the Lower Huron Shale [C]// SEG 2019 Workshop: Mathematical Geophysics: Traditional vs Learning. Beijing: SEG, 2020: 123-126.
37 RODRIGUEZ J D, PEREZ A, LOZANO J A Sensitivity analysis of k-Fold cross validation in prediction error estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (3): 569- 575
doi: 10.1109/TPAMI.2009.187
38 周道卿, 谭林, 谭捍东, 等 频率域吊舱式直升机航空电磁资料的马奎特反演[J]. 地球物理学报, 2010, 53 (2): 421- 427
ZHOU Dao-qing, TAN Lin, TAN Han-dong, et al Inversion of frequency domain helicopter-borne electromagnetic data with Marquardt’s method[J]. Chinese Journal of Geophysics, 2010, 53 (2): 421- 427
doi: 10.3969/j.issn.0001-5733.2010.02.020
39 蔡京, 齐彦福, 殷长春 频率域航空电磁数据变加权横向约束反演[J]. 地球物理学报, 2014, 57 (3): 953- 960
CAI Jing, QI Yan-fu, YIN Chang-chun Weighted laterally-constrained inversion of frequency-domain airborne EM data[J]. Chinese Journal of Geophysics, 2014, 57 (3): 953- 960
doi: 10.6038/cjg20140324
40 纪昌明, 周婷, 向腾飞, 等 基于网格搜索和交叉验证的支持向量机在梯级水电系统隐随机调度中的应用[J]. 电力自动化设备, 2014, 34 (3): 125- 131
JI Chang-ming, ZHOU Ting, XIANG Teng-fei, et al Application of support vector machine based on grid search and cross validation in implicit stochastic dispatch of cascaded hydropower stations[J]. Electric Power Automation Equipment, 2014, 34 (3): 125- 131
doi: 10.3969/j.issn.1006-6047.2014.03.021
[1] 粟序明,方成刚,潘裕斌,吴伟伟,李亚萍,朱浪. 变照度下的视觉测量系统误差建模[J]. 浙江大学学报(工学版), 2020, 54(10): 1929-1935.
[2] 周朝君,黄明辉,陆新江. 基于低维约束嵌入的分布参数系统建模[J]. 浙江大学学报(工学版), 2019, 53(11): 2154-2162.
[3] 孙颖,胡艳香,张雪英,段淑斐. 面向情感语音识别的情感维度PAD预测[J]. 浙江大学学报(工学版), 2019, 53(10): 2041-2048.
[4] 谢罗峰, 徐慧宁, 黄沁元, 赵越, 殷国富. 应用双树复小波包和NCA-LSSVM检测磁瓦内部缺陷[J]. 浙江大学学报(工学版), 2017, 51(1): 184-191.
[5] 梁耀,冯冬芹. 基于攻击增益的工业控制系统物理层安全风险评估[J]. 浙江大学学报(工学版), 2016, 50(3): 589-.
[6] 李丽娟, 熊路, 刘君, 徐欧官. 基于AP-LSSVM的多模型预测控制[J]. J4, 2013, 47(10): 1741-1746.
[7] 刘志鹏, 颜文俊. 预粉磨系统的智能建模与复合控制[J]. J4, 2012, 46(8): 1506-1511.
[8] 王鹿军, 吕征宇. 基于LSSVM的电梯交通模式的模糊识别[J]. J4, 2012, 46(7): 1333-1338.
[9] 孙晓东,陈龙,杨泽斌,朱熀秋,嵇小辅. 贝叶斯证据框架下LS-SVM的BPMSM磁链建模[J]. J4, 2012, 46(5): 873-877.
[10] 喻海清, 刘毅, 陈坤, 纪俊, 李平. 鲁棒的递推核学习建模方法在高炉过程的应用[J]. J4, 2012, 46(4): 705-711.
[11] 陈磊. 遗传最小二乘支持向量机法预测时用水量[J]. J4, 2011, 45(6): 1100-1103.
[12] 夏明, 董亚波, 鲁东明. 无线传感网逐跳自适应FEC传输可靠性
保证方法
[J]. J4, 2011, 45(2): 273-279.
[13] 赵黎丽, 李平, 李修亮. 带遗忘因子的线性系统自适应观测器设计[J]. J4, 2011, 45(10): 1704-1709.
[14] 杨先勇, 周晓军, 张文斌, 杨富春. 基于局域波法和KPCA-LSSVM的滚动轴承故障诊断[J]. J4, 2010, 44(8): 1519-1524.
[15] 安剑奇, 吴敏, 何勇, 曹卫华. 基于料面温度场特征的高炉炉况诊断方法[J]. J4, 2010, 44(7): 1276-1281.