Please wait a minute...
J4  2011, Vol. 45 Issue (6): 1100-1103    DOI: 10.3785/j.issn.1008-973X.2011.06.023
土木工程     
遗传最小二乘支持向量机法预测时用水量
陈磊
浙江工业大学 建工学院,浙江 杭州 310014
Genetic least squares support vector machine approach
to hourly water consumption prediction
CHEN Lei
College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF  HTML
摘要:

为解决传统最小二乘支持向量机采用交叉验证确定参数耗时较长的问题,提出基于遗传算法和最小二乘支持向量机的城市时用水量预测方法.根据城市时用水量序列具有较强相关性的特点,利用自相关系数法分析时用水量序列的变化规律,并引入二进制编码的自适应遗传算法优化最小二乘支持向量机的超参数,采用交叉验证法确定遗传算法个体的适应值,建立了时用水量预测模型.实例分析表明:与基于传统最小二乘支持向量机的时用水量预测方法相比,基于遗传算法和最小二乘支持向量机的时用水量预测方法计算速度更快,预测精度更高.

Abstract:

As traditional least squares support vector machine(LSSVM) parameter selection using cross-validation is timeconsuming, a city hourly water consumption forecasting method based on genetic algorithm(GA) and LSSVM was proposed. An autocorrelation method was used to analyze the hourly water consumption series according to the strong serial correlation. A self-adaptive binary GA was introduced to optimize the hyper-parameters of LSSVM, and the individual fitness values in GA were determined by cross-validation. Then a hourly water consumption forecasting model was built. Case study shows that the proposed hourly water consumption forecasting method based on GA and LSSVM has higher computing speed and better estimating performance than the traditional LSSVM–based method.

出版日期: 2011-07-14
:  TU 991.33  
基金资助:

国家自然科学基金资助项目(50878108); 浙江省教育厅科研资助项目(20070194).

作者简介: 陈磊(1977—),男,博士,副教授,从事给水系统建模和优化的研究.E-mail:zj_chen_lei@sohu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

陈磊. 遗传最小二乘支持向量机法预测时用水量[J]. J4, 2011, 45(6): 1100-1103.

CHEN Lei. Genetic least squares support vector machine approach
to hourly water consumption prediction. J4, 2011, 45(6): 1100-1103.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.06.023        https://www.zjujournals.com/eng/CN/Y2011/V45/I6/1100

[1] VAPNIK V N. The nature of statistical learning theory [M]. New York: Springer, 1995.
[2] 王亮,张宏伟,牛志广.支持向量机在城市用水量短期预测中的应用[J].天津大学学报,2005,38(11): 1021-1025.
WANG Liang, ZHANG Hongwei, NIU Zhiguang. Application of support vector machines in shortterm prediction of urban water consumption[J].Journal of Tianjin University, 2005,38(11): 1021-1025.
[3] 俞亭超,张土乔,柳景青.峰值识别的SVM模型及在时用水量预测中的应用[J].系统工程理论与实践,2005,25(1): 134-137.
YU Tingchao, ZHANG Tuqiao, LIU Jingqing. SVM model with peak value recognition and its application to hourly water consumption forecasting[J]. System Engineering–Theory & Practice, 2005, 25(1): 134-137.
[4] SUYKEN J A K, VAN G T, DE M B, et al. Least squares support vector machines[M]. Singapore: World Scientific, 2002: 71-111.
[5] 王小平,曹力明.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社,2002: 73-74.
[6] VAN G T, SUYKEN J A K, BAESENS B, et al. Benchmarking least squares support vector machine classifiers[J]. Machine Learning, 2004, 54(1): 5-32.
[7] 丁晶,邓育仁.随机水文学[M].成都:成都科技大学出版社,1988: 18-20.

[1] 李红卫,王梦琳,吕谋,李红艳. 给水管网污染源定位模拟及影响因素分析[J]. J4, 2011, 45(1): 81-86.
[2] 沈承, 俞亭超, 张土乔. 城市供水系统突发性污染监测[J]. J4, 2010, 44(8): 1604-1607.