土木工程 |
|
|
|
|
遗传最小二乘支持向量机法预测时用水量 |
陈磊 |
浙江工业大学 建工学院,浙江 杭州 310014 |
|
Genetic least squares support vector machine approach to hourly water consumption prediction |
CHEN Lei |
College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China |
[1] VAPNIK V N. The nature of statistical learning theory [M]. New York: Springer, 1995. [2] 王亮,张宏伟,牛志广.支持向量机在城市用水量短期预测中的应用[J].天津大学学报,2005,38(11): 1021-1025. WANG Liang, ZHANG Hongwei, NIU Zhiguang. Application of support vector machines in shortterm prediction of urban water consumption[J].Journal of Tianjin University, 2005,38(11): 1021-1025. [3] 俞亭超,张土乔,柳景青.峰值识别的SVM模型及在时用水量预测中的应用[J].系统工程理论与实践,2005,25(1): 134-137. YU Tingchao, ZHANG Tuqiao, LIU Jingqing. SVM model with peak value recognition and its application to hourly water consumption forecasting[J]. System Engineering–Theory & Practice, 2005, 25(1): 134-137. [4] SUYKEN J A K, VAN G T, DE M B, et al. Least squares support vector machines[M]. Singapore: World Scientific, 2002: 71-111. [5] 王小平,曹力明.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社,2002: 73-74. [6] VAN G T, SUYKEN J A K, BAESENS B, et al. Benchmarking least squares support vector machine classifiers[J]. Machine Learning, 2004, 54(1): 5-32. [7] 丁晶,邓育仁.随机水文学[M].成都:成都科技大学出版社,1988: 18-20. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|