Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2108-2114    DOI: 10.3785/j.issn.1008-973X.2021.11.011
能源与动力工程     
液雾燃烧的热声不稳定动态特性
陶成飞(),周昊*(),胡流斌,刘子华,岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Dynamic characteristics of thermoacoustic instability of liquid spray combustion
Cheng-fei TAO(),Hao ZHOU*(),Liu-bin HU,Zi-hua LIU,Ke-fa CEN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1457 KB)   HTML
摘要:

为了探究液雾燃烧不稳定的动态特性,在实验室尺度的3 kW液雾燃烧器上,通过测量不同当量比下燃烧室的声压和火焰热释放速率变化情况,并且使用非线性时间序列分析方法,如相空间重构和递归分析,研究热声振荡信号的特点. 当液雾燃烧器的风量从4.0 L/min逐渐增加到9.5 L/min后,燃烧室中热声振荡的动态特性不同. 当风量为4.0~5.5 L/min时,燃烧室的声压幅值为20~30 Pa;当风量为6.0 L/min时,燃烧室的声压幅值突然增大到100 Pa. 发生热声不稳定的液雾火焰将会呈湍流燃烧噪声、极限环、半稳态等非线性状态. 与此同时,风量的增加(当量比的减少)会触发液雾燃烧热声不稳定,燃烧室的湍流燃烧噪声会突变成极限环振荡.

关键词: 液雾燃烧热声不稳定燃烧动态特性非线性湍流火焰时间序列    
Abstract:

A laboratory-scale 3 kW liquid spray burner was used to explore the dynamic characteristics of liquid spray combustion instability. The dynamic characteristics of sound pressure and flame heat release rate in the combustion chamber under different equivalence ratios were measured, and nonlinear time series analysis methods such as phase space and recurrence plot were used to study the characteristics of thermoacoustic oscillation signal. When the air flow rate of the liquid spray burner gradually increased from 4.0 L/min to 9.5 L/min, the dynamic characteristics of thermoacoustic oscillation in the combustion chamber were different. When the air flow rate was from 4.0 L/min to 5.5 L/min, the sound pressure amplitude of the combustion chamber was between 20 Pa and 30 Pa. However, when the air flow rate was 6.0 L/min, the sound pressure amplitude suddenly increased to 100 Pa. The flame presents turbulent combustion noise, limit cycle, and semi-steady state. At the same time, the increase in air volume (decrease in the equivalence ratio) will trigger thermoacoustic instability, and the turbulent combustion noise of the combustion chamber will abruptly become a limit cycle oscillation.

Key words: liquid spray combustion    thermoacoustic instability    combustion dynamics    nonlinearity    turbulent flame    time-series
收稿日期: 2020-12-16 出版日期: 2021-11-05
CLC:  TK 47  
基金资助: 国家自然科学基金杰出青年科学基金资助项目(51825605)
通讯作者: 周昊     E-mail: chengfei_tao@163.com;zhouhao@zju.edu.cn
作者简介: 陶成飞(1991—),男,博士,从事油气燃烧不稳定和污染物排放控制研究. orcid.org/0000-0001-8580-3248. E-mail: chengfei_tao@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陶成飞
周昊
胡流斌
刘子华
岑可法

引用本文:

陶成飞,周昊,胡流斌,刘子华,岑可法. 液雾燃烧的热声不稳定动态特性[J]. 浙江大学学报(工学版), 2021, 55(11): 2108-2114.

Cheng-fei TAO,Hao ZHOU,Liu-bin HU,Zi-hua LIU,Ke-fa CEN. Dynamic characteristics of thermoacoustic instability of liquid spray combustion. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2108-2114.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.011        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2108

图 1  液雾燃烧器的结构和几何尺寸
图 2  液雾燃烧热声不稳定的测量设备
图 3  不同空气体积流量下声压幅值变化情况
图 4  不同空气体积流量下火焰CH*幅值变化情况
图 5  风量7.0 L/min下极限环热声振荡的快速傅里叶分析
图 6  最佳时间延迟计算
图 7  最小嵌入维度计算
图 8  不同风量下的声压信号时序图
图 9  不同风量下的声压信号相空间图
图 10  不同风量下的声压信号的递归分析
1 HUANG Y, YANG V Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35 (4): 293- 364
doi: 10.1016/j.pecs.2009.01.002
2 POINSOT T Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36 (1): 1- 28
doi: 10.1016/j.proci.2016.05.007
3 ZHAO D, LU Z, ZHAO H, et al A review of active control approaches in stabilizing combustion systems in aerospace industry[J]. Progress in Aerospace Sciences, 2018, 97: 35- 60
doi: 10.1016/j.paerosci.2018.01.002
4 石黎, 付忠广, 沈亚洲, 等 进口压力对预混燃烧不稳定性及NOx排放影响的大涡模拟 [J]. 动力工程学报, 2017, 37 (2): 111- 118
SHI Li, FU Zhong-guang, SHEN Ya-zhou, et al Large eddy simulation on the effects of inlet pressure on the premixed combustion instability and NOx emission [J]. Journal of Chinese Society of Power Engineering, 2017, 37 (2): 111- 118
doi: 10.3969/j.issn.1674-7607.2017.02.005
5 段润泽, 赵若霖, 刘联胜, 等 稳焰器结构对贫燃预混燃烧火焰不稳定性的影响[J]. 动力工程学报, 2018, 38 (12): 983- 987
DUAN Run-ze, ZHAO Ruo-lin, LIU Lian-sheng, et al Effects of stabilizer structure on the instability of lean premixed flame[J]. Journal of Chinese Society of Power Engineering, 2018, 38 (12): 983- 987
doi: 10.3969/j.issn.1674-7607.2018.12.006
6 ZHOU H, LIU Z H, TAO C F Mitigating self-excited thermoacoustic oscillations in a liquid fuel combustor using dual perforated plates[J]. Journal of the Acoustical Society of America, 2020, 148 (3): 1756- 1766
doi: 10.1121/10.0002007
7 ABHISHEK L P, JUN N, RYO A, et al Influences of liquid fuel atomization and flow rate fluctuations on spray combustion instabilities in a backward-facing step combustor[J]. Combustion and Flame, 2020, 220 (1): 337- 356
8 GUAN Y, LI L K B, AHN B, et al Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode[J]. Chaos, 2019, 29 (5): 1- 13
9 AHN B, LEE S, JUNG S, et al Nonlinear mode transition mechanisms of a self-excited Jet A-1 spray flame[J]. Combustion and Flame, 2019, 203: 170- 179
doi: 10.1016/j.combustflame.2019.02.008
10 杨向明, 杨尚荣, 杨岸龙, 等 同轴离心式喷嘴热声不稳定性递归分析[J]. 宇航学报, 2020, 41 (5): 608- 616
YANG Xiang-ming, YANG Shang-rong, YANG An-long, et al Recurrence analysis of thermoacoustic instabilities of a coaxial swirl injector[J]. Journal of Astronautics, 2020, 41 (5): 608- 616
11 JUNIPER M P, SUJITH R I Sensitivity and nonlinearity of thermoacoustic oscillations[J]. Annual Review of Fluid Mechanics, 2018, 50 (1): 661- 689
doi: 10.1146/annurev-fluid-122316-045125
12 ZOU Y, DONNER R V, MARWAN N, et al Complex network approaches to nonlinear time series analysis[J]. Physics Reports, 2019, 787: 1- 97
doi: 10.1016/j.physrep.2018.10.005
13 MARWAN N, ROMANA M C, KURTHS T J Recurrence plots for the analysis of complex systems[J]. Physics Reports, 2007, 438: 237- 329
doi: 10.1016/j.physrep.2006.11.001
14 UNNI V R, SUJITH R I Flame dynamics during intermittency in a turbulent combustor[J]. Proceedings of the Combustion Institute, 2017, 36 (3): 3791- 3798
doi: 10.1016/j.proci.2016.08.030
15 PAWAR S A, PANCHAGNULA M V, SUJITH R I Phase synchronization and collective interaction of multiple flamelets in a laboratory scale spray combustor[J]. Proceedings of the Combustion Institute, 2019, 37 (4): 5121- 5128
doi: 10.1016/j.proci.2018.08.045
16 NAIR V, SUJITH R I Intermittency as a transition state in combustor dynamics: an explanation for flame dynamics nearing lean blowout[J]. Combustion Science and Technology, 2015, 187 (10−12): 1821- 1835
17 王伟, 出口祥啓, 何永森, 等 涡脱落热声振荡中相似性及涡声锁频行为[J]. 物理学报, 2019, 68 (23): 1- 11
WANG Wei, DEGUCHI Y, HE Yong-sheng, et al Similarity and vortex-acoustic lock-on behavior in thermoacoustic oscillation involving vortex shedding[J]. Acta Physica Sinica, 2019, 68 (23): 1- 11
18 LIPIKA K, SUJITH R I Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout[J]. Journal of Fluid Mechanics, 2012, 713: 376- 397
doi: 10.1017/jfm.2012.463
19 GODAVARTHI V, PAWAR S A, UNNI V R, et al Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor[J]. Chaos, 2018, 28 (11): 1- 10
20 王玮, 肖俊峰, 高松, 等 空燃比对燃气轮机燃烧室燃烧不稳定性影响的数值研究[J]. 燃烧科学与技术, 2019, 25 (5): 439- 444
WANG Wei, XIAO Jun-feng, GAO Song, et al Numerical study on influences of air-fuel ratio on combustion instability in gas turbine combustor[J]. Journal of Combustion Science and Technology, 2019, 25 (5): 439- 444
[1] 李文娟,邓洪高,马谋,蒋俊正. 基于图信号处理的传染病传播预测方法[J]. 浙江大学学报(工学版), 2022, 56(5): 1017-1024.
[2] 张科文,潘柏松. 考虑非线性模型不确定性的航天器自主交会控制[J]. 浙江大学学报(工学版), 2022, 56(4): 833-842.
[3] 张楠,董红召,佘翊妮. 公交专用道条件下公交车辆轨迹的Seq2Seq预测[J]. 浙江大学学报(工学版), 2021, 55(8): 1482-1489.
[4] 李曦,胡健,姚建勇,魏科鹏,王鹏飞,邢浩晨. 基于观测器摩擦补偿的机电系统高精度控制[J]. 浙江大学学报(工学版), 2021, 55(6): 1150-1158.
[5] 张孝良,耿灿,聂佳梅,高乔. 液力忆惯容器装置建模与特性试验[J]. 浙江大学学报(工学版), 2021, 55(3): 430-440.
[6] 朱宝强,王述红,张泽,王鹏宇,董福瑞. 基于时间序列与DEGWO-SVR模型的隧道变形预测方法[J]. 浙江大学学报(工学版), 2021, 55(12): 2275-2285.
[7] 许重宝,张虹淼,孙立宁,李娟,樊炎,郭浩. 基于样本熵与时频分析的手部抓握运动意图预测[J]. 浙江大学学报(工学版), 2021, 55(12): 2315-2322.
[8] 陈功,郑春华,翁献明,HAMEEDBaustani,胡鸿昊,马晓宇,柳景青. 基于多水文数据关联分析的雨水口异常诊断[J]. 浙江大学学报(工学版), 2021, 55(1): 55-61.
[9] 展鹏,陈琳,曹鲁慧,李学庆. 基于特征符号表示的网络异常流量检测算法[J]. 浙江大学学报(工学版), 2020, 54(7): 1281-1288.
[10] 王晨霖,杨洁,居文军,顾复,陈芨熙,纪杨建. 基于智能家电的短期电力负荷预测与削峰填谷优化[J]. 浙江大学学报(工学版), 2020, 54(7): 1418-1424.
[11] 胡凯明,李华. 轴向受压梁非线性随机最优电压有界控制[J]. 浙江大学学报(工学版), 2020, 54(5): 940-946.
[12] 应宏伟,王迪,许鼎业,章丽莎. 动态承压水作用下考虑土体非线性的基坑弱透水层出逸比降研究[J]. 浙江大学学报(工学版), 2020, 54(12): 2356-2363.
[13] 赵雅琴,聂雨亭,吴龙文,张宇鹏,何胜阳. 基于脊路跟踪的变分非线性调频模态分解方法[J]. 浙江大学学报(工学版), 2020, 54(10): 1874-1882.
[14] 汪子龙,王柱,於志文,郭斌,周兴社. 多源数据跨国人口迁移预测[J]. 浙江大学学报(工学版), 2019, 53(9): 1759-1767.
[15] 李世伟,杨永清,蒲黔辉,孙博. 轴压圆钢管混凝土短柱非线性徐变效应分析方法[J]. 浙江大学学报(工学版), 2019, 53(6): 1083-1091.