Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (12): 2356-2363    DOI: 10.3785/j.issn.1008-973X.2020.12.010
土木与交通工程     
动态承压水作用下考虑土体非线性的基坑弱透水层出逸比降研究
应宏伟1,2,3,4(),王迪1,3,4,许鼎业1,3,4,章丽莎5
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 河海大学 岩土工程科学研究所,江苏 南京 210098
3. 浙江省城市地下空间开发工程技术研究中心,浙江 杭州 310058
4. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
5. 浙江大学城市学院 土木工程系,浙江 杭州 310015
Analysis on exit gradient of aquitard at bottom of foundation pit under dynamic confined water considering nonlinearity of soil
Hong-wei YING1,2,3,4(),Di WANG1,3,4,Ding-ye XU1,3,4,Li-sha ZHANG5
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Geotechnical Research Institute of Hohai University, Hohai University, Nanjing 210098, China
3. Engineering Research Center of Urban Underground Development of Zhejiang Province, Hangzhou 310058, China
4. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
5. Department of Civil Engineering, Zhejiang University City College, Hangzhou 310015, China
 全文: PDF(1427 KB)   HTML
摘要:

针对滨海临江地区基坑底部弱透水层由动态承压水导致的突涌问题,将基坑底部弱透水层渗流问题简化为一维越流模型,考虑土体的压缩非线性和渗透非线性,推导动态承压水作用下弱透水层超静孔压半解析解,通过与有限差分解进行对比,验证解的可靠性. 分析土体非线性以及动态承压水参数对弱透水层中超静孔压和开挖面处出逸比降的影响. 分析结果表明:当考虑土体的非线性特性时,弱透水层中各深度处的超静孔压均大于线性假定下的结果;承压水波动过程中基坑开挖面处最大出逸比降随无量纲因子的增加而增加;不考虑土的非线性会使求得的出逸比降偏小. 用线性假定下的解进行突涌稳定性分析或者降水设计均会带来较大的安全隐患,在动态承压水变化周期长、平均水位高、波动幅值大的情况下应充分考虑土体非线性的影响.

关键词: 动态承压水土体非线性出逸比降突涌弱透水层    
Abstract:

Aiming at the problem that the confined water usually fluctuates in coastal area and it will cause inrush accidents of foundation pit. To deal with the stability in this condition, the seepage consolidation theory was used. Then the semi-analytical solution of excess pore water pressure considering soil nonlinearity was deduced. The solution was compared with the results by finite difference method in order to verify the validity of the solution. The effects of soil nonlinearity and dynamic confined water parameters on the excess pore pressure in the aquifer and the exit gradient at the excavation surface were analyzed. The calculating results show that the excess pore pressure considering the nonlinearity of the soil is larger than that under the linear assumption at all depths. The maximum exit gradient at the excavation surface of the foundation pit increases with the increasing of the dimensionless factor. The exit gradient will be smaller without considering the nonlinearity of the soil. The analysis of stability or precipitation design with solutions under linear assumption will lead to great potential safety hazards. The nonlinear influence should be fully considered especially when the dynamic pressure water has a long cycle of change, the average water level is high, or the amplitude of the fluctuation is large.

Key words: dynamic confined water    nonlinearity of soil    exit gradient    inrush accident    aquitard
收稿日期: 2019-10-31 出版日期: 2020-12-31
CLC:  TU 432  
基金资助: 国家自然科学基金资助项目(51678523,51808492)
作者简介: 应宏伟(1971—),男,教授,博士,从事岩土工程研究. orcid.org/0000-0003-2079-6504. E-mail: ice898@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
应宏伟
王迪
许鼎业
章丽莎

引用本文:

应宏伟,王迪,许鼎业,章丽莎. 动态承压水作用下考虑土体非线性的基坑弱透水层出逸比降研究[J]. 浙江大学学报(工学版), 2020, 54(12): 2356-2363.

Hong-wei YING,Di WANG,Ding-ye XU,Li-sha ZHANG. Analysis on exit gradient of aquitard at bottom of foundation pit under dynamic confined water considering nonlinearity of soil. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2356-2363.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.12.010        http://www.zjujournals.com/eng/CN/Y2020/V54/I12/2356

图 1  滨海临江地区基坑剖面示意图
图 2  超静孔压随时间因子的变化
图 3  同一周期内不同时刻超静孔压沿深度分布
图 4  超静孔压随时间因子的变化
图 5  最大出逸比降随θ的变化
图 6  超静孔压随时间因子的变化
图 7  最大出逸比降随平均水位因子的变化
图 8  超静孔压随时间因子的变化
图 9  最大出逸比降随幅值因子的变化
图 10  出逸比降随时间因子的变化
1 中国建筑科学研究院. 建筑基坑支护技术规程: JGJ 120-2012[S]. 北京: 中国建筑工业出版社, 2012: 73-74.
2 潘泓, 曹洪, 谭泽新, 等 基坑抗突涌计算方法的对比分析及应用探讨[J]. 岩石力学与工程学报, 2006, (Suppl.2): 3529- 3534
PAN Hong, CAO Hong, TAN Ze-xin, et al Discussion on comparison analysis and application of calculation methods to anti-up rush of foundation pit[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, (Suppl.2): 3529- 3534
3 孙玉永, 周顺华, 肖红菊 承压水基坑抗突涌稳定判定方法研究[J]. 岩石力学与工程学报, 2012, 31 (2): 399- 405
SUN Yu-yong, ZHOU Shun-hua, XIAO Hong-ju Study of stability judgment method of confined water in rushing in foundation pit[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (2): 399- 405
doi: 10.3969/j.issn.1000-6915.2012.02.020
4 杨建民, 郑刚 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. 岩土力学, 2009, 30 (1): 261- 264
YANG Jian-min, ZHENG Gang Classification of seepage failure sand opinion to formula for check bursting instability in dewatering[J]. Rock and Soil Mechanics, 2009, 30 (1): 261- 264
doi: 10.3969/j.issn.1000-7598.2009.01.047
5 丁春林 软土地区承压水基坑突涌稳定计算法研究综述[J]. 地下空间与工程学报, 2007, 3 (2): 333- 338
DING Chun-lin Summary of study on calculation method of inrushing for confined water foundation pit in soft soil area[J]. Chinese Journal of Underground Space and Engineering, 2007, 3 (2): 333- 338
6 HONG Y, NG C W W, WANG L Z Initiation and failure mechanism of base instability of excavations in clay triggered by hydraulic uplift[J]. Canadian Geotechnical Journal, 2014, 52 (5): 599- 608
7 马石城, 印长俊, 邹银生 抗承压水基坑底板的厚度分析与计算[J]. 工程力学, 2004, (2): 204- 208
MA Shi-cheng, YIN Chang-jun, ZOU Yin-sheng Analysis and calculation of the pit base plate thickness of bearing resistance water foundation[J]. Engineering Mechanics, 2004, (2): 204- 208
doi: 10.3969/j.issn.1000-4750.2004.02.035
8 丁春林 软土地区弱透水层承压水基坑突涌计算模型研究[J]. 工程力学, 2008, (10): 194- 199
DING Chun-lin A study on calculation model of inrushing for foundation pit of semi pervious aquiclude with confined water in soft soil area[J]. Engineering Mechanics, 2008, (10): 194- 199
9 王玉林, 谢康和, 卢萌盟, 等 受承压水作用的基坑底板临界厚度的确定方法[J]. 岩土力学, 2010, 31 (5): 1539- 1544
WANG Yu-lin, XIE Kang-he, LU Meng-meng, et al A method for determining critical thickness of base soil of foundation pit subjected to confined water[J]. Rock and Soil Mechanics, 2010, 31 (5): 1539- 1544
doi: 10.3969/j.issn.1000-7598.2010.05.032
10 LI J, HELM D C Using an analytical solution to estimate the subsidence risk caused by ASR applications[J]. Environmental and Engineering Geoscience, 2001, 7 (1): 67- 79
doi: 10.2113/gseegeosci.7.1.67
11 LI J A nonlinear elastic solution for 1-D subsidence due to aquifer storage and recovery applications[J]. Hydrogeology Journal, 2003, 11 (6): 646- 658
doi: 10.1007/s10040-003-0283-3
12 黄大中. 水位变化引发的土层耦合固结变形理论研究[D]. 杭州: 浙江大学, 2014.
HUANG Da-zhong. Studies on theory of coupled consolidation for soil layer induced by groundwater level variation [D]. Hangzhou: Zhejiang University, 2014.
13 TSENG C M, TSAI T L, HUANG L H Effects of body force on transient poroelastic consolidation due to groundwater pumping[J]. Environmental Geology, 2008, 54 (7): 1507
doi: 10.1007/s00254-007-0932-2
14 CONTE E, TRONCONE A Soil layer response to pore pressure variations at the boundary[J]. Geotechnique, 2008, 58 (1): 37- 44
doi: 10.1680/geot.2008.58.1.37
15 应宏伟, 章丽莎, 谢康和, 等 坑外地下水位波动引起的基坑水土压力响应[J]. 浙江大学学报: 工学版, 2014, 48 (3): 492- 497
YING Hong-wei, ZHANG Li-sha, XIE Kang-he, et al Pore and earth pressure response to groundwater fluctuation out of foundation pit[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (3): 492- 497
16 章丽莎, 应宏伟, 谢康和, 等 动态承压水作用下深基坑底部弱透水层的出逸比降解析研究[J]. 岩土工程学报, 2017, 39 (2): 295- 300
ZHANG Li-sha, YING Hong-wei, XIE Kang-he, et al Analytical study on exit gradient at base aquitard of deep excavations under dynamic confined water[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (2): 295- 300
doi: 10.11779/CJGE201702013
17 DAVIS E H, RAYMOND G P A non-linear theory of consolidation[J]. Geotechnique, 1965, 15 (2): 161- 173
doi: 10.1680/geot.1965.15.2.161
18 MESRI G, ROKHSAR A Theory of consolidation for clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1974, 11 (11): A222
19 李冰河, 谢康和, 应宏伟, 等 变荷载下软粘土非线性一维固结半解析解[J]. 岩土工程学报, 1999, 21 (3): 288- 293
LI Bing-he, XIE Kang-he, YING Hong-wei, et al Semi-analytical solution of one dimensional non-linear consolidation of soft clay under time-dependent loading[J]. Chinese Journal of Geotechnical Engineering, 1999, 21 (3): 288- 293
doi: 10.3321/j.issn:1000-4548.1999.03.008
20 宗梦繁, 吴文兵, 梅国雄, 等 连续排水边界条件下土体一维非线性固结解析解[J]. 岩石力学与工程学报, 2018, 37 (12): 2829- 2838
ZONG Meng-fan, WU Wen-bing, MEI Guo-xiong, et al An analytical solution for one-dimensional nonlinear consolidation of soils with continuous drainage boundary[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (12): 2829- 2838
21 LI C, XIE K One-dimensional nonlinear consolidation of soft clay with the non-Darcian flow[J]. Journal of Zhejiang University: Science A, 2013, 14 (6): 435- 446
doi: 10.1631/jzus.A1200343
22 丁玉梅 热传导方程初边值问题的解法[J]. 天津科技大学学报, 2006, (1): 84- 85
DING Yu-mei Exploration on equation of heat conduction and initial-boundary value problems[J]. Journal of Tianjin University of Science and Technology, 2006, (1): 84- 85
doi: 10.3969/j.issn.1672-6510.2006.01.024
[1] 黄大中, 谢康和, 应宏伟. 渗透各向异性土层中基坑二维稳定渗流半解析解[J]. 浙江大学学报(工学版), 2014, 48(10): 1802-1808.
[2] 张雪婵, 张杰, 龚晓南, 尹序源. 典型城市承压含水层区域性特性[J]. J4, 2010, 44(10): 1998-2004.