Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2115-2124    DOI: 10.3785/j.issn.1008-973X.2021.11.012
能源与动力工程     
高温热解煤气放电性能的影响因素
赵一飞(),方梦祥*(),史勇敏,夏芝香,岑建孟
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Factors affecting discharge performance of high-temperature coal pyrolysis gas
Yi-fei ZHAO(),Meng-xiang FANG*(),Yong-min SHI,Zhi-xiang XIA,Jian-meng CEN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1521 KB)   HTML
摘要:

为了提高电除尘器净化高温热解煤气时的除尘效率及稳定性,采用实验室高温放电系统研究电除尘器中温度、气氛、气体调质以及电源极性等因素对热解煤气放电性能的影响. 研究结果表明:提高温度,热解煤气的放电电流上升,起晕电压、击穿电压下降,不利于颗粒脱除. 对于高温热解煤气,降低CH4的体积分数、提高H2、CO2的体积分数,使放电电流减小,起晕电压和击穿电压升高,更利于颗粒脱除. 添加水蒸气,起晕电压升高,放电电流减小,电晕放电区间更宽,伏安特性曲线向右偏移,优化了放电性能. 在高温下通过正极性电源施加电压,标准煤气及添加水蒸气调质后的热解煤气都具有较高的击穿电压及正电晕放电区域,性能优于负极性电源.

关键词: 高温热解煤气放电气氛水蒸气电源极性    
Abstract:

A laboratory high-temperature discharge system was used to study factors affecting discharge performance of high-temperature coal pyrolysis gas for improving the dust remove efficiency and stability of high-temperature coal pyrolysis gas dust removal, focusing on the influence of temperature, atmosphere, conditioning optimization and power supply polarity on the discharge characteristics of pyrolysis gas. Results show that, increasing the temperature, the discharge current of the pyrolysis gas increases, and the corona and breakdown voltage decrease, which is not conducive to particle removal. For high-temperature pyrolysis gas, reducing the volume fraction of CH4 and increasing the volume fraction of H2 and CO2 reduce the discharge current, increase the corona and breakdown voltage, which is more conducive to particle removal. With adding water vapor, the corona initiation voltage increases, the discharge current obviously decreases, the corona discharge interval is wider, and the V-I characteristic curve shifts to the right, which has a more obvious optimization effect on the discharge performance. Applying voltage via positive polarity power supply at high temperature, the standard gas and the pyrolysis gas after tempering with water vapor have higher breakdown voltage and positive corona discharge area, and the performance is better than that of the negative polarity power supply.

Key words: high-temperature pyrolysis gas    discharge    atmosphere    water vapor    power supply polarity
收稿日期: 2020-12-17 出版日期: 2021-11-05
CLC:  TK 01  
基金资助: 国家重点研发计划资助项目(2018YFB0605000)
通讯作者: 方梦祥     E-mail: 21827010@zju.edu.cn;mxfang@zju.edu.cn
作者简介: 赵一飞(1997—),男,硕士生,从事高温静电除尘技术研究. orcid.org/0000-0002-9661-4589. E-mail: 21827010@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
赵一飞
方梦祥
史勇敏
夏芝香
岑建孟

引用本文:

赵一飞,方梦祥,史勇敏,夏芝香,岑建孟. 高温热解煤气放电性能的影响因素[J]. 浙江大学学报(工学版), 2021, 55(11): 2115-2124.

Yi-fei ZHAO,Meng-xiang FANG,Yong-min SHI,Zhi-xiang XIA,Jian-meng CEN. Factors affecting discharge performance of high-temperature coal pyrolysis gas. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2115-2124.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.012        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2115

图 1  高温放电实验系统示意图
气氛组别 φB/%
CH4 H2 CO CO2 N2
标准煤气 49.3 26.0 11.2 8.0 5.75
1 70.0 16.0 6.6 4.8 3.50
2 35.0 33.8 14.5 10.4 7.50
3 40.0 40.0 8.8 6.4 4.00
4 57.4 15.0 12.8 9.0 6.61
5 44.0 23.0 20.0 7.0 5.20
6 55.4 29.2 ? 9.0 6.50
7 43.5 22.6 9.6 20.0 5.00
8 53.2 28.1 12.1 ? 6.21
9 44.0 23.0 10.0 7.0 15.00
表 1  高温热解煤气实验气氛
图 2  温度对热解煤气放电的影响
图 3  不同温度下CH4体积分数对热解煤气放电的影响
图 4  600 ℃下碳丝的生长
气氛组别 φB/%
CH4 H2 CO CO2 N2 C2H4
入口 70.0 16.0 6.6 4.8 3.5 0
出口 66.0 21.0 8.7 3.5 3.3 0.1
表 2  600 ℃放电管进出气体成分对比
图 5  不同温度下H2体积分数对热解煤气放电的影响
气氛组别 φB/%
CH4 H2 CO CO2 N2
入口 40.0 40.0 8.8 6.4 4.0
出口 44.3 38.1 12.4 4.85 3.6
表 3  高 φ(H2)气氛放电管进出气体成分对比
图 6  低 φ(H2)煤气放电实验中碳丝的生长
图 7  不同温度下CO体积分数对热解煤气放电的影响
图 8  CO在20、600 ℃时的放电特性对比
图 9  不同温度下CO2体积分数对热解煤气放电的影响
图 10  不同温度下N2体积分数对热解煤气放电的影响
图 11  气氛调质对热解煤气放电的优化效果
气氛
组别
φB/%
H2O 标准煤气
调质煤气1 10 90
调质煤气2 30 70
调质煤气3 50 50
表 4  调质煤气的气体成分
图 12  不同温度下H2O体积分数对热解煤气放电的影响
图 13  400、600 ℃下正极性电源对热解煤气放电的影响
图 14  400、600 ℃下正极性电源对高 φ(CH4)煤气放电的影响
图 15  600 ℃下正极性电源对调质煤气3放电的影响
1 中华人民共和国国家统计局. 中国统计年鉴 [M]. 北京: 中国统计出版社, 2019.
2 岑可法 煤炭高效清洁低碳利用研究进展[J]. 科技导报, 2018, 36 (10): 66- 74
CEN Ke-fa Research progress and outlook for efficient, clean and low-carbon coal utilization[J]. Science and Technology Review, 2018, 36 (10): 66- 74
3 白效言, 张飏, 王岩, 等 低阶煤热解关键技术问题分析及研究进展[J]. 煤炭科学技术, 2018, 46 (1): 192- 198
BAI Xiao-yan, ZHANG Biao, WANG Yan, et al Analysis of key issues and research progress in pyrolysis of low rank coal[J]. Coal Science and Technology, 2018, 46 (1): 192- 198
4 SEVILLE J P. Gas cleaning in demanding applications [M]. Berlin: Springer Science and Business Media, 2013.
5 SHALE C C Progress in high-temperature electrostatic precipitation[J]. Journal of the Air Pollution Control Association, 1967, 17 (3): 159- 160
doi: 10.1080/00022470.1967.10468962
6 FULYFUL F K High temperature-high pressure effect on performance of an electrostatic precipitator[J]. Journal of Kerbala University, 2008, 6 (2): 84- 92
7 WANG X H, NI M J, XIAO G, et al An analytical method for DC negative corona discharge in a wire-cylinder device at high temperatures[J]. Journal of Electrostatics, 2014, 72 (4): 270- 284
doi: 10.1016/j.elstat.2014.05.001
8 YAN P, ZHENG C, ZHU W, et al An experimental study on the effects of temperature and pressure on negative corona discharge in high-temperature ESPs[J]. Applied Energy, 2016, 164: 28- 35
doi: 10.1016/j.apenergy.2015.11.040
9 WEISSLER G L Positive and negative point-to-plane corona in pure and impure hydrogen, nitrogen, and argon[J]. Physical Review, 1943, 63 (3/4): 96
10 AKISHEV Y S, APONIN G I, KARAL’NIK V B, et al Phenomenology of a high-current negative point-to-plane corona in nitrogen[J]. Plasma Physics Reports, 2004, 30 (9): 779- 787
doi: 10.1134/1.1800224
11 BOLOGA A, PAUR H, SEIFERT H, et al Influence of gas composition, temperature and pressure on corona discharge characteristics[J]. International Journal of Plasma Environmental Science and Technology, 2011, 5 (2): 110- 116
12 XIAO G, WANG X, ZHANG J, et al Characteristics of DC discharge in a wire-cylinder configuration at high ambient temperatures[J]. Journal of Electrostatics, 2014, 72 (1): 13- 21
doi: 10.1016/j.elstat.2013.10.013
13 方梦祥, 柳佳佳, 岑建孟, 等 高温静电除尘技术研究进展及应用前景[J]. 高电压技术, 2019, 45 (4): 1108- 1117
FANG Meng-xiang, LIU Jia-jia, CEN Jian-meng, et al Research progress and application prospect of high temperature electrostatic precipitation technology[J]. High Voltage Engineering, 2019, 45 (4): 1108- 1117
14 王浩霖, 骆仲泱, 赫明春, 等 烟气成分对静电除尘器放电特性的影响[J]. 浙江大学学报: 工学版, 2020, 54 (12): 2336- 2343
WANG Hao-lin, LUO Zhong-yang, HE Ming-chun, et al Effect of gas composition on discharge characteristics of electrostatic precipitator[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (12): 2336- 2343
15 BUSH J R, FELDMAN P L, ROBINSON M High temperature, high pressure electrostatic precipitation[J]. Journal of the Air Pollution Control Association, 1979, 29 (4): 365- 371
doi: 10.1080/00022470.1979.10470802
16 CHEN Q, FANG M, CEN J, et al Characteristics of negative DC discharge in a wire-cylinder configuration under coal pyrolysis gas components at high temperatures[J]. RSC Advances, 2018, 8 (40): 22737- 22747
doi: 10.1039/C8RA03205J
17 徐海成, 戈亮 二氧化碳加氢逆水汽变换反应的研究进展[J]. 化工进展, 2016, 35 (10): 3180- 3189
XU Hai-cheng, GE Liang Progress on the catalytic hydrogenation of CO2 via reverse water gas shift reaction [J]. Chemical Industry and Engineering Progress, 2016, 35 (10): 3180- 3189
[1] 蔡帮煌,宋慧敏,郭善广,张海灯,盛佳明. 射频放电等离子体激励对激波/边界层干扰的控制效果[J]. 浙江大学学报(工学版), 2020, 54(9): 1839-1848.
[2] 周昊,白子贤,陈振寰,张佳凯. NH3和SO3混合气氛下的灰沉积生长特性[J]. 浙江大学学报(工学版), 2020, 54(2): 389-397.
[3] 山石泉,周志军,匡建平,张煜,岑可法. 褐煤在N2及CO2气氛下的热解与富氧燃烧特性[J]. 浙江大学学报(工学版), 2019, 53(9): 1826-1834.
[4] 徐泽坤,沈宏宇,胡涛,李响,董树荣. 新型VBO接口芯片静电放电防护器件[J]. 浙江大学学报(工学版), 2019, 53(4): 794-800.
[5] 徐力刚, 黄亚继, 王健, 邹磊, 岳峻峰. 还原性气氛下水冷壁材料15CrMoG的高温腐蚀特性[J]. 浙江大学学报(工学版), 2018, 52(8): 1535-1541.
[6] 柳佳佳, 岑建孟, 方梦祥, 陈泉霖. 不同气体成分下高温直流放电特性[J]. 浙江大学学报(工学版), 2018, 52(5): 971-979.
[7] 田帅奇, 仉庆宇, 王可, 范利武, 俞自涛, 葛坚. 试样尺寸对水蒸气扩散系数瞬态测试的影响[J]. 浙江大学学报(工学版), 2018, 52(11): 2077-2082.
[8] 张峰, 刘畅, 黄鲁, 吴宗国. 基于双向可控硅的强鲁棒性静电防护器件[J]. 浙江大学学报(工学版), 2017, 51(8): 1676-1680.
[9] 许希, 徐甸, 严佩, 朱唯卓, 郑成航, 高翔, 骆仲泱, 倪明江, 岑可法. 高温线板式静电除尘器颗粒捕集[J]. 浙江大学学报(工学版), 2017, 51(3): 487-493.
[10] 吕俊翔, 刘军恒, 孙平, 苏雯博, 孟建, 万垚峰. 荷电反应器状态对柴油机颗粒荷质比的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2414-2419.
[11] 孟嘉辉, 廖祖维, 蒋斌波, 黄正梁, 王靖岱, 阳永荣. 水蒸气处理对ZSM-5催化剂及甲醇制丙烯反应的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2451-2458.
[12] 叶丽雅,汪震,文福拴,杨俊,江道灼. V2G代理商调频服务经济效益评估[J]. 浙江大学学报(工学版), 2016, 50(9): 1831-1840.
[13] 李小华,包伟伟,王静,李慧霞,蔡忆昔. 基于电流体动力学的LED前照灯散热[J]. 浙江大学学报(工学版), 2016, 50(7): 1284-1289.
[14] 王静, 蔡忆昔, 包伟伟, 李慧霞. 离子风强化大功率LED散热的实验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1952-1958.
[15] 易思阳,金虹庆,范利武,徐旭,俞自涛,葛坚. 多孔建筑材料水蒸气扩散系数的瞬态测试方法[J]. 浙江大学学报(工学版), 2016, 50(1): 16-20.