能源与动力工程 |
|
|
|
|
还原性气氛下水冷壁材料15CrMoG的高温腐蚀特性 |
徐力刚1, 黄亚继1, 王健1, 邹磊2, 岳峻峰2 |
1. 东南大学 能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096;
2. 江苏方天电力技术有限公司, 江苏 南京 211102 |
|
High-temperature corrosion properties of water wall material 15CrMoG under reducing atmosphere |
XU Li-gang1, HUANG Ya-ji1, WANG Jian1, ZOU Lei2, YUE Jun-feng2 |
1. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China;
2. Jiangsu Frontier Electric Technology Co. Ltd, Nanjing 211102, China |
引用本文:
徐力刚, 黄亚继, 王健, 邹磊, 岳峻峰. 还原性气氛下水冷壁材料15CrMoG的高温腐蚀特性[J]. 浙江大学学报(工学版), 2018, 52(8): 1535-1541.
XU Li-gang, HUANG Ya-ji, WANG Jian, ZOU Lei, YUE Jun-feng. High-temperature corrosion properties of water wall material 15CrMoG under reducing atmosphere. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1535-1541.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.08.013
或
http://www.zjujournals.com/eng/CN/Y2018/V52/I8/1535
|
[1] 赵永椿, 马斯鸣, 杨建平, 等. 燃煤电厂污染物超净排放的发展及现状[J]. 煤炭学报, 2015, 40(11):2629-2640 ZHAO Yong-chun, MA Si-ming, YANG Jian-ping, et al. Status of ultra-low emission technology in coal-fired power plant[J]. Journal of China Coal Society, 2015, 40(11):2629-2640
[2] 王继华. 烟气超净排放改造技术在燃煤机组中的应用[J]. 华电技术, 2017, 39(2):65-67 WANG Ji-hua. Application of flue gas ultra-clean emission technology in coal-fired power unit[J]. Huadian Technology, 2017, 39(2):65-67
[3] ZHAO Q, ZHANG Z, CHENG D, et al. High tempe rature corrosion of water wall materials T23 and T24 in simulated furnace atmospheres[J]. Chinese Journal of Chemical Engineering, 2012, 20(4):814-822.
[4] KAUR M, SINGH H, PRAKASH S. Surface engineering analysis of detonation-gun sprayed Cr3C2-NiCr coating under high-temperature oxidation and oxidation-erosion environments[J]. Surface and Coatings Technology, 2011, 206(2/3):530-541.
[5] PANERU M, STEIN-BRZOZOWSKA G, MAIER J, et al. Corrosion mechanism of alloy 310 austenitic steel beneath NaCl deposit under varying SO2 concentrations in an oxy-fuel combustion atmosphere[J]. Energy and Fuels, 2013, 27(10):5699-5705.
[6] 武岳, 王永征, 栗秀娟, 等. 生物质混煤燃烧锅炉过热器受热面金属氯腐蚀特性[J]. 动力工程学报, 2014, 34(9):690-695 WU Yue, WANG Yong-zheng, LI Xiu-juan, et al. Chlorine corrosion characteristic of boiler heating surface due to co-firing of biomass and coal[J]. Journal of Chinese Society of Power Engineering, 2014, 34(9):690-695
[7] 中华人民共和国国家质量监督检验检疫总局. 高压锅炉用无缝钢管:GB5310-2008[S]. 北京:中国标准出版社, 2008
[8] 中国国家标准化管理委员会. 煤灰成分分析方法:GBT1574-2007[S]. 北京:中国标准出版社, 2007
[9] ZONG C, WANG Q, HUANG X. Corrosion characteristics of 20G in the environment of heating surface in biomass boilers[J]. International Journal of Smart Home, 2015, 9(7):1-8.
[10] 吴广君. 实验室模拟锅炉水冷壁高温腐蚀的热分析动力学研究[D]. 杭州:浙江大学, 2005:17-18 WU Guang-jun. Study for thermal analysis kinetic of high-temperature corrosion of boiler's water wall in laboratory[D]. Hangzhou:Zhejiang University, 2005:17-18
[11] ZHONG X, WU X, HAN E. Effects of exposure temperature and time on corrosion behavior of a ferritic-martensitic steel P92 in aerated supercritical water[J]. Corrosion Science, 2015, 90:511-521.
[12] TAN L, REN X, ALLEN T R. Corrosion behavior of 9-12% Cr ferritic-martensitic steels in supercritical water[J]. Corrosion Science, 2010, 52(4):1520-1528.
[13] CHEN L, LAN H, HUANG C, et al. Hot corrosion behavior of porous nickel-based alloys containing molybdenum in the presence of NaCl at 750℃[J]. Engineering Failure Analysis, 2017, 79:245-252.
[14] LIU Y, FAN W, ZHANG X, et al. High-Temperature corrosion properties of boiler steels under a simulated high-chlorine coal-firing atmosphere[J]. Energy and Fuels, 2017, 31(4):4391-4399.
[15] UUSITALO M A, VUORISTO P, MANTYLA T A. High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits[J]. Corrosion Science, 2004, 46(6):1311-1331.
[16] 张知翔, 成丁南, 边宝, 等. 水冷壁材料在模拟烟气中的高温腐蚀研究[J]. 材料工程, 2011(4):14-19 ZHANG Zhi-xiang, CHENG Ding-nan, BIAN Bao, et al. Study on high temperature corrosion of water wall materials in simulated furnace atmosphere[J]. Material Engineering, 2011(4):14-19
[17] KARLSSON S, JONSSON T, HALL J, et al. Mitigation of fireside corrosion of stainless steel in power plants:a laboratory study of the influences of SO2 and KCl on initial stages of corrosion[J]. Energy and Fuels, 2014, 28(5):3102-3109. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|