Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (1): 43-49    DOI: 10.3785/j.issn.1008-973X.2018.01.007
机械与能源工程     
氟塑钢复合管冲蚀磨损性能的试验研究
袁瑞峰1,2, 孙志坚1,2, 杨继虎1,2, 杨明3, 胡亚才1,2, 俞自涛1,2
1. 浙江大学 热工与动力系统研究所, 浙江 杭州 310027;
2. 浙江大学 浙江省制冷与低温技术重点实验室, 浙江 杭州 310027;
3. 杭州佰强能源科技有限公司, 浙江 杭州 310015
Experimental study on erosion wear behavior of PFA coated stainless steel tube
YUAN Rui-feng1,2, SUN Zhi-jian1,2, YANG Ji-hu1,2, YANG Ming3, HU Ya-cai1,2, YU Zi-tao1,2
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China;
2. Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China;
3. Hangzhou Baiqiang Energy Technology Limited Company, Hangzhou 310015, China
 全文: PDF(3171 KB)   HTML
摘要:

通过实验研究适用于电厂余热深度回收的新型氟塑钢复合管的冲蚀磨损性能,主要考察在刚玉砂和煤灰两种颗粒冲蚀下,气流速度、温度与颗粒质量浓度等对复合管中低速气流冲蚀磨损的影响.通过扫描电子显微镜对冲蚀磨损后的表面微观形貌进行观察,初步探讨冲蚀磨损机制.结果表明,在中低速度下,复合管的冲蚀磨损速率随气流速度的变化呈幂函数关系;在两种不同颗粒的冲蚀下,复合管的冲蚀磨损速率随颗粒质量浓度的变化均近似呈线性关系;复合管的冲蚀磨损速率随气流温度的升高而降低,但变化幅度不大;微观形貌分析显示,复合管表面受到颗粒反复垂直冲击时主要发生塑性变形,局部出现显微裂纹,在受到颗粒的反复斜向冲击时主要发生切削和犁耕.

Abstract:

Experiments were conducted to analyze the erosion wear behavior of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) coated the stainless steel tube, which was applied in the waste heat recovery deeply in power plant. The influences of the velocity and temperature of air and the particle mass concentration on the erosion behavior were analyzed at medium-low speed of PFA coated stainless steel tube under two kinds of particles, namely corundum sand and coal ash. The mechanism of erosion wear was discussed by observing the surface morphologies through scanning electron microscope. Experimental results show a good power function relationship between erosion rates of PFA coated stainless steel tube and the velocity of air with the velocity at medium-low speed ranges. The erosion rates are approximately proportional to the particle mass concentration under two kinds of particles. The erosion rates decrease as the temperature of air increases with a comparatively lower variation. The morphologies show that the surface of PFA coated stainless steel tube mainly happens plastic deformation and microcrack locally with particle impacting vertically, and happens cutting together with ploughing with particle impacting obliquely.

收稿日期: 2017-05-23 出版日期: 2017-12-15
CLC:  TK224  
基金资助:

国家重点研发计划资助项目(2016YFC0203704).

通讯作者: 孙志坚,男,副教授.orcid.org/0000-0003-0615-3422.     E-mail: sun_zju@126.com
作者简介: 袁瑞峰(1992-),男,硕士生,从事低温余热回收的研究.orcid.org/0000-0002-0859-3088.E-mail:rfyuan319@foxmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

袁瑞峰, 孙志坚, 杨继虎, 杨明, 胡亚才, 俞自涛. 氟塑钢复合管冲蚀磨损性能的试验研究[J]. 浙江大学学报(工学版), 2018, 52(1): 43-49.

YUAN Rui-feng, SUN Zhi-jian, YANG Ji-hu, YANG Ming, HU Ya-cai, YU Zi-tao. Experimental study on erosion wear behavior of PFA coated stainless steel tube. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 43-49.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.01.007        http://www.zjujournals.com/eng/CN/Y2018/V52/I1/43

[1] 徐钢, 许诚, 杨勇平,等. 电站锅炉余热深度利用及尾部受热面综合优化[J]. 中国电机工程学报, 2013, 33(14):1-8. XU Gang, XU Cheng, YANG Yong-ping, et al. Deep utilization of exhaust heat and comprehensive optimization of tail heating surfaces for utility boilers[J]. Proceedings of the CSEE, 2013, 33(14):1-8.
[2] 谭青, 王东平, 王伟敏, 等. 锅炉烟气余热回收装置[J]. 上海节能, 2012, 31(5):30-33. TAN Qing, WANG Dong-ping, WANG Wei-min, et al. Boiler flue gas waste heat recovery unit[J]. Shanghai Energy Conservation, 2012, 31(5):30-33.
[3] WANG C, HE B, SUN S, et al. Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant[J]. Energy, 2012, 48(1):196-202.
[4] XU G, XU C, YANG Y, et al. A novel flue gas waste heat recovery system for coal-fired ultra-supercritical power plants[J]. Applied Thermal Engineering, 2014, 67(1/2):240-249.
[5] WANG C, HE B, YAN L, et al. Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant[J]. Energy, 2014, 65(1):80-90.
[6] 张付新,袁晓豆,史月涛,等. 1021t/h锅炉单侧增设低压省煤器降低排烟温度的实践[J]. 电站系统工程, 2012(05):21-23. ZHANG Fu-xin, YUAN Xiao-dou, SHI Yue-tao, et al. Practice of lp economizer installed in coal-fired boiler to reduce exhaust gas temperature[J]. Power System Engineering, 2012(05):21-23.
[7] 韩中合,李鹏. 锅炉加装低温省煤器热经济性分析[J]. 热力发电, 2016(06):70-73. HAN Zhong-he, LI Peng. Thermal economic analysis for adding low temperature economizer in boilers[J]. Thermal Power Generation, 2016(06):70-73.
[8] 张超. 锅炉低温省煤器系统优化设计及热经济性分析[D]. 吉林:东北电力大学, 2015. ZHANG Chao. Boiler of low temperature economizer system optimization design and thermal economic analysis[D]. Jilin:Northeast Dianli University, 2015.
[9] 胡清,孙少鹏,田鑫,等. 氟塑料换热器技术的应用进展研究[J]. 化工新型材料, 2016(04):23-25. HU Qing, SUN Shao-peng, TIAN Xin, et al. Application progress of fluorine plastic heat exchanger[J]. New Chemical Materials, 2016(04):23-25.
[10] 田鑫,胡清,孙少鹏,等. 氟塑料换热器技术在燃煤电厂的应用现状及前景分析[J]. 发电与空调, 2015(5):15-18. TIAN Xin, HU Qing, SUN Shao-peng, et al. Applicating situation and prospect analysis of the technology about fluorine plastic heat exchanger in the coal-fired units[J]. Power Generation and Air Condition, 2015(5):15-18.
[11] 鲍听,李复明,李文华,等. 氟塑料换热器应用于超低排放燃煤机组的可行性研究[J]. 浙江电力, 2015(11):74-78. BAO Ting, LI Fu-ming, LI Wen-hua, et al. Feasibility study on application of fluoroplastic heat exchanger in coal-fired power generating units with ultra-low emission[J]. Zhejiang Electric Power, 2015(11):74-78.
[12] ARJULA S, HARSHA A P, GHOSH M K. Solid-particle erosion behavior of high-performance thermoplastic polymers[J]. Journal of Materials Science, 2008, 43(6):1757-1768.
[13] QIAN D, BAO L, TAKATERA M, et al. Fiber-reinforced polymer composite materials with high specific strength and excellent solid particle erosion resistance[J]. Wear, 2010, 268(3/4):637-642.
[14] KAUNDAL R. Role of process variables on the solid particle erosion of polymer composites:a critical review[J]. Silicon, 2014, 6(1):5-20.
[15] IVOSEVIC M, KNIGHT R, KALIDINDI S R, et al. Solid particle erosion resistance of thermally sprayed functionally graded coatings for polymer matrix composites[J]. Surface and Coatings Technology, 2006, 200(16/17):5145-5151.
[16] PATNAIK A, SATAPATHY A, CHAND N, et al. Solid particle erosion wear characteristics of fiber and particulate filled polymer composites:a review[J]. Wear, 2010, 268(1/2):249-263.
[17] 刘刚. 含砂气流对玻璃钢的冲蚀磨损规律研究[D]. 合肥:合肥工业大学, 2013. LIU Gang. Study on the erosion wear behaviors of the GFRP impacted by air flow containing sands[D]. Hefei:Hefei University of Technology, 2013.
[18] 王彦平,龚卓,王起才. 改性环氧树脂固体颗粒冲蚀磨损试验研究[J]. 工程塑料应用, 2015(01):93-96. WANG Yan-ping, GONG Zhuo, WANG Qi-cai. Experimental research of erosion wear of modified epoxy resin solid particle[J]. Engineering Plastics Application, 2015(01):93-96.
[19] 沈潮,程井动,郭玉玲,等. 可熔性聚四氟乙烯(PFA)的性能及其应用[J]. 有机氟工业, 2015(01):48-50. SHEN Chao, CHENG Jing-dong, GUO Yu-ling, et al. Properties and application of perfluoroalkoxy polymer[J]. Organo Fluorine Industry, 2015(01):48-50.
[20] BARKOULA N M, KARGER-KOCSIS J. Review processes and influencing parameters of the solid particle erosion of polymers and their composites[J]. Journal of Materials Science, 2002, 37(18):3807-3820.

[1] 徐力刚, 黄亚继, 王健, 邹磊, 岳峻峰. 还原性气氛下水冷壁材料15CrMoG的高温腐蚀特性[J]. 浙江大学学报(工学版), 2018, 52(8): 1535-1541.
[2] 郑成航, 程乐鸣, 骆仲泱, 王勤辉, 施正伦, 岑可法. 裤衩型300 MW循环流化床炉膛二次风数值模拟[J]. J4, 2010, 44(4): 743-749.
[3] 斯东波, 周昊, 岑可法. 不同带粉量的三次风再燃试验与数值模拟[J]. J4, 2010, 44(3): 482-488.