Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (5): 971-979    DOI: 10.3785/j.issn.1008-973X.2018.05.018
机械与能源工程     
不同气体成分下高温直流放电特性
柳佳佳, 岑建孟, 方梦祥, 陈泉霖
浙江大学 能源清洁利用国家重点实验室, 浙江 杭州 310027
Direct Current discharge characteristics under different gas compositions at high temperature
LIU Jia-jia, CEN Jian-meng, FANG Meng-xiang, CHEN Quan-lin
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
 全文: PDF(1924 KB)   HTML
摘要:

为了提高静电除尘器用于高温气体除尘时的运行可靠性及稳定性,采用小型线管式高温静电除尘实验装置,对CO2、N2、空气及热解煤气4种气体在300-700℃下的直流放电特性进行研究.结果表明,随温度升高,放电电流增大,起晕电压及击穿电压下降,击穿电压降低更快;温度对电负性气体CO2、空气放电特性的影响大于非电负性气体N2.高温热解煤气放电会发生生成C和H2O的化学反应,放电特性与N2更相似,但与之不同的是,当电源电压较低时,因煤气中含有电负性气体,放电电流存在一个缓冲;热解煤气中CO2浓度越高,放电电流越小,放电越稳定,但温度越高,CO2浓度对煤气放电特性的影响越小.

Abstract:

A small wire-cylinder high temperature electrostatic precipitator was used to analyze the direct current (DC) discharge characteristics of 4 types of gas (CO2/N2/air/pyrolysis gas) at 300-700℃ in order to improve the reliability and stability of the electrostatic precipitator for high temperature gas. With the temperature increasing, the discharge current increases, the onset and breakdown voltage decrease, and breakdown voltage reduces faster. The influence of temperature on electronegative gas is stronger than non-electronegative gas. Discharging in pyrolysis gas produces C and H2O, and the discharge characteristic in pyrolysis gas is similar with N2. There is a buffer under pyrolysis gas when the power supply is lower because of the existence of electronegative gas. The CO2 concentration of pyrolysis gas is higher, the discharge current is smaller, and discharging is more stable, The higher the temperature, the effect of CO2 concentration on the gas discharge characteristic is smaller.

收稿日期: 2017-04-21 出版日期: 2018-11-07
CLC:  O461  
基金资助:

国家”863”高技术研究发展计划资助项目(2013AA051203).

通讯作者: 方梦祥,男,教授.orcid.org/0000-0002-3282-8756.     E-mail: mxfang@zju.edu.cn
作者简介: 柳佳佳(1993-),女,硕士生,从事高温静电除尘等研究.orcid.org/0000-0002-5730-2590.E-mail:21527059@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

柳佳佳, 岑建孟, 方梦祥, 陈泉霖. 不同气体成分下高温直流放电特性[J]. 浙江大学学报(工学版), 2018, 52(5): 971-979.

LIU Jia-jia, CEN Jian-meng, FANG Meng-xiang, CHEN Quan-lin. Direct Current discharge characteristics under different gas compositions at high temperature. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 971-979.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.05.018        http://www.zjujournals.com/eng/CN/Y2018/V52/I5/971

[1] 韦海浪,朱琦,计桂芳,等.石油焦+重油浮法玻璃窑炉烟气高温电除尘和SCR脱硝技术及其应用[J].玻璃.2015, 42(11):40-46. WEI Hai-lang, ZHU Qi, JI Gui-fang, et al. High temperature EP+SCR denitrification technology of glass furnace flue gas andits application[J]. Glass. 2015, 42(11):40-46.
[2] 陈善继. 电除尘器在黄磷装置中的应用综述[J]. 硫磷设计与粉体工程. 2010(1):25-31. CHEN Ji-shan. Application of electrostatic precipitator in yellow phosphorous plant[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2010(1):25-31.
[3] 徐美君. 玻璃行业废气治理技术的发展和现状[J]. 玻璃. 2011,38(2):7-13. XU Mei-jun. Development and present status of cogeneration and waste gas pollution control in glass industry[J]. Glass. 2011,38(2):7-13.
[4] 张生军,郑化安,陈静升,等. 煤热解工艺中挥发分除尘技术的现状分析及建议[J]. 洁净煤技术. 2014, 20(3):79-82. ZHANG Sheng-jun, ZHENG Hua-an, CHEN Jing-sheng, et al. Status analysis and improvement measures of volatile dust removal technology in coal pyrolysis process[J]. Clean Coal Technology, 2014, 20(3):79-82.
[5] VILLOT A, GONTHIER Y, GONZE E, et al. Separation of particles from syngas at high-temperatures with an electrostatic precipitator[J]. Separation and Purification Technology, 2012, 92:181-190.
[6] SHARMA S D, DOLAN M, ILYUSHECHKIN A Y, et al. Recent developments in dry hot syngas cleaning processes[J]. Fuel, 2010, 89(4):817-826.
[7] 刘会雪,刘有智,孟晓丽. 高温气体除尘技术及其研究进展[J]. 煤化工. 2008, 135(2):14-18. LIU Hui-xue, LIU You-zhi, MENG Xiao-li. High temperature gas dust removal technology and research progress[J]. Coal Chemical Industry, 2008, 135(2):14-18.
[8] SEVILLE J P K. Gas cleaning in demanding applications[M]. London:Chapman & Hall, 1997:xiv.
[9] 闫克平,李树然,郑钦臻,等. 电除尘技术发展与应用[J]. 高电压技术. 2017, 43(2):476-486. YAN Ke-ping, LI Shu-ran, ZHENG Qin-zhen, et al. Development and application of electrostatic precipitation technology[J]. High Voltage Engineering, 2017, 43(2):476-486.
[10] HAN B, KIM H J, KIM Y J. Fine particle collection of an electrostatic precipitator in CO2-rich gas conditions for oxy-fuel combustion[J]. Science of the Total Environment, 2010, 408(21):5158-5164.
[11] BOLOGA A, PAUR H R, SEIFERT H, et al. Influence of gas composition, temperature and pressure on corona discharge characteristics[J]. International Journal of Plasma Environmental Science & Technology, 2011, 5(2):110-116.
[12] WANG X H, NI M J, XIAO G, et al. An analytical method for DC negative corona discharge in a wire-cylinder device at high temperatures[J]. Journal of Electrostatics, 2014, 72(4):270-284.
[13] YAN P, ZHENG C H, ZHU W Z, et al. An experimental study on the effects of temperature and pressure on negative corona discharge in high-temperature ESPs[J]. Applied Energy, 2016, 164(9):28-35.
[14] YAN P, ZHENG C H, XIAO G, et al. Characteristics of negative DC corona discharge in a wire-plate configuration at high temperatures[J]. Separation and Purification Technology, 2015, 139:5-13.
[15] 徐学基. 气体放电物理[M]. 上海:复旦大学出版社, 1996:87-94.
[16] 张佳鹏,肖刚,王锡辉,等. 高温环境下线管式电极结构直流放电特性实验研究[J]. 高电压技术. 2014, 40(1):242-249. ZHANG Jia-peng, XIAO Gang, WANG Xi-hui, et al. Experimental study on the DC discharge characteristics of wire-to-cylinder electrode configuration at high temperature[J]. High Voltage Engineering, 2014, 40(1):242-249.
[17] LOWKE J J, MORROW R. Theory of electric corona including the role of plasma chemistry[J]. Pure & Appl. Chem, 1994, 66(6):1287-1294.
[18] XIAO G, WANG X H, ZHANG J P, et al. Current analysis of DC negative corona discharge in a wire-cylinder configuration at high ambient temperatures[J]. Journal of Electrostatics, 2014, 72(2):107-119.
[19] 何毓忠,胡露钧,何海涛. 煤的多联产项目中高温电除尘器的试验研究[J]. 山西焦煤科技. 2013(8):8-10. HE Yu-zhong, HU Lu-jun, HE Hai-tao. Experimental study on high temperature electrostatic precipitator in coal poly-generation project[J]. Shanxi Coking Coal Science & Technology, 2013(8):8-10.
[20] KADO S, URASAKI K, SEKINE Y, et al. Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature[J]. Fuel, 2003, 82(18):2291-2297.
[21] INDARTO A, CHOI J, LEE H, et al. Effect of additive gases on methane conversion using gliding arc discharge[J]. Energy, 2006, 31(14):2986-2995.
[22] 贺新福.甲烷低温等离子体活化与煤热解耦合过程研究[D].大连:大连理工大学,2012. HE Xin-fu. Integrated process of coal pyrolysis with methane activation by cold plasma[D]. Dalian:Dalian University of technology, 2012.
[23] 王锡辉.高温线管式静电除尘器放电机理与除尘特性研究[D].杭州:浙江大学, 2015. WANG Xi-hui. Research on discharging mechanism and characteristics of dust removal in a high-temperature wire-cylinder electrostatic precipitator[D]. Hangzhou:Zhejiang University, 2015.

No related articles found!