自动化技术、计算机技术 |
|
|
|
|
基于特征符号表示的网络异常流量检测算法 |
展鹏1,2( ),陈琳1,2,*( ),曹鲁慧2,李学庆1 |
1. 山东大学 软件学院, 山东 济南 250100 2. 山东大学 信息化工作办公室,山东 济南 250100 |
|
Network traffic anomaly detection based on feature-based symbolic representation |
Peng ZHAN1,2( ),Lin CHEN1,2,*( ),Lu-hui CAO2,Xue-qing LI1 |
1. School of Software, Shandong University, Jinan 250100, China 2. Informatization Office, Shandong University, Jinan 250100, China |
引用本文:
展鹏,陈琳,曹鲁慧,李学庆. 基于特征符号表示的网络异常流量检测算法[J]. 浙江大学学报(工学版), 2020, 54(7): 1281-1288.
Peng ZHAN,Lin CHEN,Lu-hui CAO,Xue-qing LI. Network traffic anomaly detection based on feature-based symbolic representation. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1281-1288.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.005
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1281
|
1 |
ATKINSON A C, HAWKINS D M Identification of outliers[J]. Biometrics, 1981, 37 (4): 860
|
2 |
BILLOR N, HADI A S, VELLEMAN P F BACON: blocked adaptive computationally efficient outlier nominators[J]. Computational Statistics and Data Analysis, 2000, 34 (3): 279- 298
doi: 10.1016/S0167-9473(99)00101-2
|
3 |
KNORR E M, NG R T. A unified notion of outliers: properties and computation [C]//International Conference on Knowledge Discovery and Data Mining. California: AAAI, 1997: 219-222.
|
4 |
GUAN H, LI Q, YAN Z, et al. SLOF: identify density-based local outliers in big data [C]//Web Information System and Application Conference. Jinan: IEEE, 2015.
|
5 |
MARKOU M, SINGH S Novelty detection: a review—part 2: neural network based approaches[J]. Signal Processing, 2003, 83 (12): 2499- 2521
doi: 10.1016/j.sigpro.2003.07.019
|
6 |
WANG J S, CHIANG J C A cluster validity measure with outlier detection for support vector clustering[J]. IEEE Transactions on Cybernetics, 2008, 38 (1): 78- 89
|
7 |
KEOGH E, LIN J, FU A. HOT SAX: efficiently finding the most unusual time series subsequence [C]//5th IEEE International Conference on Data Mining. Houston: IEEE, 2006.
|
8 |
FU W C, LEUNG T W, KEOGH E J, et al. Finding time series discords based on Haar transform [C]//Advanced Data Mining and Applications, 2nd International Conference. Xi'an: Springer, 2006.
|
9 |
KHANH N D K, ANH D T. Time series discord discovery using WAT algorithm and iSAX representation [C]// Proceedings of the 3rd Symposium on Information and Communication Technology. Ha Long: ACM, 2012: 207–213.
|
10 |
SHIEH J, KEOGH E. iSAX: indexing and mining terabyte sized time series [C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas: ACM, 2012: 207–213.
|
11 |
孙梅玉 基于距离和密度的时间序列异常检测方法研究[J]. 计算机工程与应用, 2012, 48 (20): 11- 17 SUN Mei-yu Research on discords detect on time series based on distance and density[J]. Computer Engineering and Applications, 2012, 48 (20): 11- 17
doi: 10.3778/j.issn.1002-8331.2012.20.003
|
12 |
余宇峰, 朱跃龙, 万定生, 等 基于滑动窗口预测的水文时间序列异常检测[J]. 计算机应用, 2014, 34 (8): 2217- 2220 YU Yu-feng, ZHU Yue-long, WAN Ding-sheng, et al Time series outlier detection based on sliding window prediction[J]. Journal of Computer Applications, 2014, 34 (8): 2217- 2220
doi: 10.11772/j.issn.1001-9081.2014.08.2217
|
13 |
周大镯, 刘月芬, 马文秀 时间序列异常检测[J]. 计算机工程与应用, 2008, 44 (35): 145- 147 ZHOU Da-zhuo, LIU Yue-fen, MA Wen-xiu Effective time series outlier detection algorithm based on segmentation[J]. Computer Engineering and Applications, 2008, 44 (35): 145- 147
doi: 10.3778/j.issn.1002-8331.2008.35.044
|
14 |
张力生, 杨美洁, 雷大江 时间序列重要点分割的异常子序列检测[J]. 计算机科学, 2012, 39 (5): 183- 186 ZHANG Li-sheng, YANG Mei-jie, LEI Da-jiang Outlier sub-sequences detection for importance points segmentation of time series[J]. Computer Science, 2012, 39 (5): 183- 186
doi: 10.3969/j.issn.1002-137X.2012.05.043
|
15 |
BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers [C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas: ACM, 2000.
|
16 |
KEOGH E, CHU S, HART D, et al. An online algorithm for segmenting time series [C]//Proceedings of 2001 IEEE International Conference on Data Mining. San Jose: IEEE, 2001: 289-296.
|
17 |
KEOGH E, CHAKRABARTI K, PAZZANI M, et al Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2002, 3 (3): 263- 286
|
18 |
ZHAN P, HU Y, ZHANG Q, et al. Feature-based dividing symbolic time series representation for streaming data processing [C]//Proceedings of the 9th International Conference on Information Technology in Medicine and Education. Hangzhou: IEEE, 2018: 817-823.
|
19 |
ZHAN P, HU Y, LUO W, et al. Feature-based online segmentation algorithm for streaming time series (short paper) [C]// Proceedings of the 14th EAI International Conference CollaborateCom. Shanghai: Springer, 2018: 477-487.
|
20 |
YIN J, SI Y W, GONG Z. Financial time series segmentation based on turning points [C]//Proceedings of 2011 International Conference on System Science and Engineering. Macao: IEEE, 2011: 394-399.
|
21 |
SUN Y, LI J, LIU J, et al An improvement of symbolic aggregate approximation distance measure for time series[J]. Neurocomputing, 2014, 138: 189- 198
doi: 10.1016/j.neucom.2014.01.045
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|