计算机与控制工程 |
|
|
|
|
基于图信号处理的传染病传播预测方法 |
李文娟1( ),邓洪高1,*( ),马谋1,蒋俊正1,2 |
1. 桂林电子科技大学 信息与通信学院,广西壮族自治区 桂林 541004 2. 桂林电子科技大学 卫星导航定位与位置服务国家地方联合工程研究中心,广西壮族自治区 桂林 541004 |
|
Prediction method of infectious disease transmission based on graph signal processing |
Wen-juan LI1( ),Hong-gao DENG1,*( ),Mou MA1,Jun-zheng JIANG1,2 |
1. School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China 2. State and Local Joint Engineering Research Center for Satellite Navigation and Location Service, Guilin University of Electronic Technology, Guilin 541004, China |
引用本文:
李文娟,邓洪高,马谋,蒋俊正. 基于图信号处理的传染病传播预测方法[J]. 浙江大学学报(工学版), 2022, 56(5): 1017-1024.
Wen-juan LI,Hong-gao DENG,Mou MA,Jun-zheng JIANG. Prediction method of infectious disease transmission based on graph signal processing. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1017-1024.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.05.019
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I5/1017
|
1 |
KHADDAJ S, CHRIEF H. Prevention and control of emerging infectious diseases in human populations [C]// Proceedings of 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science. Xuzhou: [s.n.], 2020: 341-344.
|
2 |
庞维庆, 何宁, 罗燕华, 等 基于数据融合的ABC-SVM社区疾病预测方法[J]. 浙江大学学报: 工学版, 2021, 55 (7): 1253- 1260+1326 PANG Wei-qing, HE Ning, LUO Yan-hua, et al ABC-SVM disease prediction method based on data fusion in community health care[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (7): 1253- 1260+1326
|
3 |
KERMACK W O, MCKENDRICK A G A A Contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 1927, 115 (772): 700- 721
|
4 |
GAO S, CHEN L, NIETO J J, et al Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J]. Vaccine, 2006, 24 (35/36): 6037- 6045
|
5 |
GOMEZ S, ARENAS A, BORGE-HOLTHOEFER J, et al Discrete-time Markov chain approach to contact-based disease spreading in complex networks[J]. Europhysics Letters, 2010, 89 (3): 38009
doi: 10.1209/0295-5075/89/38009
|
6 |
BENVENUTO D, GIOVANETTI M, VASSALLO L, et al Application of the ARIMA model on the COVID-2019 epidemic dataset[J]. Data in Brief, 2020, 29: 105340
doi: 10.1016/j.dib.2020.105340
|
7 |
余艳妮, 聂绍发, 廖青, 等 传染病预测及模型选择研究进展[J]. 公共卫生与预防医学, 2018, 29 (5): 89- 92 YU Yan-ni, NIE Shao-fa, LIAO Qing, et al Research progress on prediction and model selection of infectious diseases[J]. Journal of Public Health and Preventive Medicine, 2018, 29 (5): 89- 92
|
8 |
KIESHA P, YANG L, TIMOTHY W R, et al The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study[J]. The Lancet Public Health, 2020, 5 (5): 261- 270
doi: 10.1016/S2468-2667(20)30073-6
|
9 |
SANDRYHAILA A, MOURA J M Discrete signal processing on graphs[J]. IEEE Transactions on Signal Processing, 2013, 61 (7): 1644- 1656
doi: 10.1109/TSP.2013.2238935
|
10 |
杨杰, 蒋俊正 利用联合图模型的传感器网络数据修复方法[J]. 西安电子科技大学学报, 2020, 47 (1): 44- 51 YANG Jie, JIANG Jun-zheng Method for data recovery in the sensor network based on the joint graph model[J]. Journal of Xidian University, 2020, 47 (1): 44- 51
|
11 |
XUE X The contact process with semi-infected state on the complete graph[J]. Stochastic Analysis and Applications, 2018, 36 (2): 324- 340
doi: 10.1080/07362994.2017.1399802
|
12 |
BUCUR D, HOLME P Beyond ranking nodes: predicting epidemic outbreak sizes by network centralities[J]. PLOS Computational Biology, 2020, 16 (7): e1008052
doi: 10.1371/journal.pcbi.1008052
|
13 |
ISUFI E, LOUKAS A, PERRAUDIN N, et al Forecasting time series with VARMA recursions on graphs[J]. IEEE Transactions on Signal Processing, 2019, 67 (18): 4870- 4885
doi: 10.1109/TSP.2019.2929930
|
14 |
MEI J, MOUEA J Signal processing on graphs: causal modeling of unstructured data[J]. IEEE Transactions on Signal Processing, 2017, 65 (8): 2077- 2092
doi: 10.1109/TSP.2016.2634543
|
15 |
NOWZARI C, PRECIADO V M, PAPPAS G J Analysis and control of epidemics: a survey of spreading processes on complex networks[J]. IEEE Control Systems, 2016, 36 (1): 26- 46
doi: 10.1109/MCS.2015.2495000
|
16 |
PUSCHEL M, MOURA J Algebraic signal processing theory: foundation and 1-D time[J]. IEEE Transactions on Signal Processing, 2008, 56 (8): 3572- 3585
doi: 10.1109/TSP.2008.925261
|
17 |
SANDRYHAILA A, MOURA J Discrete signal processing on graphs: frequency analysis[J]. IEEE Transactions on Signal Processing, 2014, 62 (12): 3042- 3054
doi: 10.1109/TSP.2014.2321121
|
18 |
JIANG J, CHENG C, SUN Q Nonsubsampled graph filter banks: theory and distributed algorithms[J]. IEEE Transactions on Signal Processing, 2019, 67 (15): 3938- 3953
doi: 10.1109/TSP.2019.2922160
|
19 |
TAY D B, JIANG J Time-varying graph signal denoising via median filters[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68 (3): 1053- 1057
doi: 10.1109/TCSII.2020.3017800
|
20 |
JIANG J, FENG H, TAY D B, et al Theory and design of joint time-vertex nonsubsampled filter banks[J]. IEEE Transactions on Signal Processing, 2021, 69: 1968- 1982
doi: 10.1109/TSP.2021.3064984
|
21 |
GRASSI F, LOUKAS A, PERRAUDIN N, et al A time-vertex signal processing framework: scalable processing and meaningful representations for time-series on graphs[J]. IEEE Transactions on Signal Processing, 2018, 66 (3): 817- 829
doi: 10.1109/TSP.2017.2775589
|
22 |
JIANG J, TAY D B, SUN Q, et al Recovery of time-varying graph signals via distributed algorithms on regularized problems[J]. IEEE Transactions on Signal and Information Processing over Networks, 2020, 6: 540- 555
doi: 10.1109/TSIPN.2020.3010613
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|