机械工程 |
|
|
|
|
基于迁移学习的机械制图智能评阅方法 |
高一聪1( ),王彦坤1,费少梅1,林琼2,*( ) |
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027 2. 浙江工业大学 机械工程学院,浙江 杭州 310014 |
|
Intelligent proofreading method of engineering drawing based on transfer learning |
Yi-cong GAO1( ),Yan-kun WANG1,Shao-mei FEI1,Qiong LIN2,*( ) |
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China 2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China |
引用本文:
高一聪,王彦坤,费少梅,林琼. 基于迁移学习的机械制图智能评阅方法[J]. 浙江大学学报(工学版), 2022, 56(5): 856-863, 889.
Yi-cong GAO,Yan-kun WANG,Shao-mei FEI,Qiong LIN. Intelligent proofreading method of engineering drawing based on transfer learning. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 856-863, 889.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.05.002
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I5/856
|
1 |
谭建荣, 张树有, 陆国栋. 图学基础教程[M]. 北京: 高等教育出版社, 2006.
|
2 |
费少梅, 陆国栋, 顾大强 时空融合知行耦合的机械大类课程教学新范式探索实践[J]. 高等工程教育研究, 2017, (6): 76- 80 FEI Shao-mei, LU Guo-dong, GU Da-qiang Exploration and practice of a new teaching paradigm of mechanical courses based on the integration of time and space, knowledge and practice[J]. Research on Higher Engineering Education, 2017, (6): 76- 80
|
3 |
SANCHEZ J, MONZON N, AGUSTIN S An analysis and implementation of the Harris corner detector[J]. Image Processing On Line, 2018, 8: 305- 328
doi: 10.5201/ipol.2018.229
|
4 |
冯毅雄, 李康杰, 高一聪, 等 面向视觉伺服的工业机器人轮廓曲线角点识别[J]. 浙江大学学报:工学版, 2020, 54 (8): 6- 13 FENG Yi-xiong, LI Kang-jie, GAO Yi-cong, et al Corner recognition of industrial robot contour curve for visual servo[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 6- 13
|
5 |
冯毅雄, 李康杰, 高一聪, 等 基于特征与形貌重构的轴件表面缺陷检测方法[J]. 浙江大学学报:工学版, 2020, 54 (3): 427- 434 FENG Yi-xiong, LI Kang-jie, GAO Yi-cong, et al The method of surface defect detection of shaft parts based on feature and morphology reconstruction[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 427- 434
|
6 |
KYEONG K, KIM H Classification of mixed-type defect patterns in wafer bin maps using convolutional neural networks[J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 31 (3): 395- 402
doi: 10.1109/TSM.2018.2841416
|
7 |
LEE H, KIM Y, KIM C O A deep learning model for robust wafer fault monitoring with sensor measurement noise[J]. IEEE Transactions on Semiconductor Manufacturing, 2017, 30 (2): 23- 31
|
8 |
SUDHA S, VIDHYALAKSHMI M, PAVITHRA K, et al. An automatic classification method for environment: Friendly waste segregation using deep learning [C]// 2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR). Chennai: IEEE, 2016: 65-70.
|
9 |
DELATTE D M, CRITES S T, GUTTENBERG N, et al Segmentation convolutional neural networks for automatic crater detection on Mars[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12 (8): 2944- 2957
doi: 10.1109/JSTARS.2019.2918302
|
10 |
JIN Y, HE F, LIU S, et al. Small scale crater detection based on deep learning with multi-temporal samples of high-resolution images [C]// 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images. Shanghai: IEEE, 2019: 1-4.
|
11 |
PALESTRA G, PETTINICCHIO A. Improved performance in facial expression recognition using 32 geometric features [C]∥International Conference on Image Analysis and Processing. Genova: ICIAR, 2015: 518-528.
|
12 |
ZHANG Z, JAISWAL P, RAI R FeatureNet: machining feature recognition based on 3D convolution neural network[J]. Computer-Aided Design, 2018, 101: 12- 22
doi: 10.1016/j.cad.2018.03.006
|
13 |
NATARAJAN V, HUNG T Y, VAIKUNDAM S, et al. Convolutional networks for voting-based anomaly classification in metal surface inspection [C]// IEEE International Conference on Industrial Technology. Toronto: IEEE, 2017.
|
14 |
魏域君. 顾及几何与拓扑特征的深度学习遥感影像道路提取[D]. 武汉: 武汉大学, 2020. WEI Yu-jun. Road extraction from remote sensed imagery based on deep learning considering geometric and topological properties [D]. Wuhan: Wuhan University, 2020.
|
15 |
韩丽, 朴京钰, 兰鹏燕, 等 结构感知深度学习的三维形状分类方法[J]. 计算机辅助设计与图形学学报, 2021, 33 (1): 29- 38 HAN Li, PIAO Jing-yu, LAN Peng-yan, et al 3D shape classification method based on shape-aware deep learning[J]. Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (1): 29- 38
doi: 10.3724/SP.J.1089.2021.18280
|
16 |
李军军, 曹建农, 朱莹莹, 等 高分辨率遥感影像建筑区域局部几何特征提取[J]. 遥感学报, 2020, 24 (3): 233- 244 LI Jun-jun, CAO Jian-nong, ZHU Ying-ying, et al Built-up area detection from high resolution remote sensing images using geometric features[J]. Journal of Remote Sensing, 2020, 24 (3): 233- 244
|
17 |
SONG R, XIAO Z, LIN J, et al CIES: cloud-based intelligent evaluation service for video homework using CNN-LSTM network[J]. Journal of Cloud Computing, 2020, 9 (1): 1- 9
|
18 |
LIN J, ZHAO Y, LIU C, et al Abnormal video homework automatic detection system[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12 (12): 10529- 10537
doi: 10.1007/s12652-020-02860-9
|
19 |
JING S, SANTOS O C, BOTICARIO J G, et al. Automatic grading of short answers for MOOC via semi-supervised document clustering [C]// International Conference on Educational Data Mining. Madrid: EDM, 2015: 554-555.
|
20 |
张旻. 智能图像识别在初中几何自动阅卷中的应用研究[D]. 北京: 北京工业大学, 2019. ZHANG Min. Research of application for intelligent image recognition in junior high school geometry automatic marking[D]. Beijing: Beijing University of Technology, 2019.
|
21 |
李万秋. 机械基础类客观题及图形改判题阅卷系统的关键技术研究[D]. 广州: 华南理工大学, 2019. LI Wan-qiu. Study on key techniques of marking system for objective questions and figure correction questions in basic mechanical courses[D]. Guangzhou: South China University of Technology, 2019.
|
22 |
沈银燕. 基于网络的建筑CAD考试系统的设计与实现[D]. 杭州: 浙江工业大学, 2009. SHEN Yin-yan. The design and implementation of the examination system of architectural CAD based on web [D]. Hangzhou: Zhejiang University of Technology, 2009.
|
23 |
易琳. CAD教学中考试及自动评卷系统的研究[D]. 成都: 电子科技大学, 2007. YI Lin. The research on the system of examination and automatic marking in cad teaching [D]. Chengdu: University of Electronic Science and Technology of China, 2007.
|
24 |
CANNY J A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8 (6): 679- 698
|
25 |
OTSU N A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 2007, 9 (1): 62- 66
|
26 |
HUANG G, LIU Z, VAN D M, et al. Densely connected convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4700-4708.
|
27 |
SIMONYAN K, ZISSERMAN A Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 34 (2): 1409- 1422
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|