Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (1): 138-147    DOI: 10.3785/j.issn.1008-973X.2026.01.013
机械工程     
结构参数对梯形滑梁式空气箔片轴承润滑性能的影响
韩怡萱1(),吴洋1,顾晨昀1,冯伟军2,安琦1,*()
1. 华东理工大学 机械与动力工程学院,上海 200237
2. 苏州昌恒精密金属压铸有限公司,江苏 苏州 215534
Effects of structural parameters on lubrication performance of trapezoidal sliding beam air foil bearings
Yixuan HAN1(),Yang WU1,Chenyun GU1,Weijun FENG2,Qi AN1,*()
1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
2. Suzhou Changheng Precision Metal Die Casting Co. Ltd, Suzhou 215534, China
 全文: PDF(2781 KB)   HTML
摘要:

以梯形滑梁式空气箔片轴承为研究对象,依据Kirchhoff理论建立顶箔有限元模型,结合梁的大变形方程和最小位能原理对滑梁进行力学分析,实现对顶箔、滑梁及滑梁周围框架结构的形变计算. 引入Reynolds方程构建流固耦合计算模型,用于分析润滑性能. 通过MATLAB编程实现对气膜压力、气膜厚度、轴承摩擦力矩和端泄量的计算,并通过试验验证计算模型的可靠性. 结合具体算例,针对标准气膜厚度、滑梁长度、滑梁宽度、滑梁斜率、底箔厚度和顶箔厚度对轴承润滑性能的影响进行数值研究. 结果表明,随着轴承与转子初始间隙的增大,气膜动压区域减小,气膜的最大压力上升,摩擦力矩减小,端泄量增大;滑梁对顶箔的支撑不连续,导致气膜压力和气膜厚度分布不连续;调整滑梁尺寸和底箔厚度会改变滑梁对顶箔的支撑刚度,当滑梁对顶箔的支撑刚度增大时,气膜厚度减小,气膜的最大压力增大.

关键词: 滑梁式空气箔片轴承力学建模流固耦合润滑性能数值计算    
Abstract:

A finite element model of top foil for trapezoidal sliding beam air foil bearings was established based on the Kirchhoff theory, and mechanical analysis of the sliding beam was carried out in combination with the large deformation equation of the beam and the principle of minimum potential energy. The deformation calculation of the top foil, the sliding beam and the frame structure around the sliding beam was realized. The Reynolds equation was introduced to develop a fluid-structure interaction calculation model for analyzing the lubrication performance. Through MATLAB programming, the air film pressure, air film thickness, bearing friction torque and end leakage flow rate were calculated, and the reliability of the calculation model was verified by experiments. Combined with specific cases, the influences of structural parameters including standard air film thickness, sliding beam length, sliding beam width, sliding beam slope, bottom foil thickness and top foil thickness on the lubrication performance of the bearing were studied. Results showed that with the increase of initial clearance between the bearing and the rotor, the dynamic pressure region of the air film decreased, the maximum pressure of the air film rose, the friction torque decreased, and the end leakage flow rate increased. Discontinuity in the support of the top foil by the sliding beam led to discontinuity in the distribution of air film pressure and air film thickness. Adjusting the sliding beam size and the bottom foil thickness changed the support stiffness of the sliding beam to the top foil. When the support stiffness increased, the thickness of the air film decreased and the maximum pressure of the air film increased.

Key words: sliding beam air foil bearing    mechanical modeling    fluid-structure interaction    lubrication performance    numerical calculation
收稿日期: 2024-11-04 出版日期: 2025-12-15
:  TH 133.35  
通讯作者: 安琦     E-mail: 19921871581@163.com;anqi@ecust.edu.cn
作者简介: 韩怡萱(1999—),女,硕士生,从事工程摩擦学研究. orcid.org/0009-0005-9476-8217. E-mail:19921871581@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
韩怡萱
吴洋
顾晨昀
冯伟军
安琦

引用本文:

韩怡萱,吴洋,顾晨昀,冯伟军,安琦. 结构参数对梯形滑梁式空气箔片轴承润滑性能的影响[J]. 浙江大学学报(工学版), 2026, 60(1): 138-147.

Yixuan HAN,Yang WU,Chenyun GU,Weijun FENG,Qi AN. Effects of structural parameters on lubrication performance of trapezoidal sliding beam air foil bearings. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 138-147.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.013        https://www.zjujournals.com/eng/CN/Y2026/V60/I1/138

图 1  滑梁式空气箔片轴承的基本结构
图 2  滑梁箔片的结构参数
图 3  轴承端面的结构及其参数
图 4  矩形薄板单元
图 5  滑梁箔片的简化示意图
图 6  连接梁的位移耦合
图 7  滑梁与轴套的接触示意图
图 8  滑梁位移之间的几何关系
图 9  箔片轴承润滑性能参数的数值求解流程图
图 10  滑梁式箔片轴承与试验台照片及试验原理图
参数数值参数数值
L0/mm2.25R/mm14.00
d/mm1.40m27
LC/mm80.63n13
LB/mm25.00h0/μm10.00
γ0.10D0/mm2.50
t1/mm0.10Dd/mm1.60
t0/mm0.10lb/mm0.20
表 1  轴承结构参数
图 11  摩擦力矩的试验与数值结果对比
图 12  气膜压力分布及对应的厚度分布
图 13  标准气膜厚度对轴承润滑性能的影响
图 14  λ=0处滑梁尺寸对气膜压力和厚度分布的影响
图 15  λ=0处箔片厚度对气膜压力和厚度分布的影响
1 WALOWIT J A, ANNO J N. Modern developments in lubrication mechanics [M]. London: Applied Science Publishers, 1975: 214–221.
2 HESHMAT H, WALOWIT J A, PINKUS O Analysis of gas-lubricated foil journal bearings[J]. Journal of Lubrication Technology, 1983, 105 (4): 647- 655
doi: 10.1115/1.3254697
3 CARPINO M, MEDVETZ L A, PENG J P Effects of membrane stresses in the prediction of foil bearing performance[J]. Tribology Transactions, 1994, 37 (1): 43- 50
doi: 10.1080/10402009408983264
4 CARPINO M, PENG J P, MEDVETZ L Misalignment in a complete shell gas foil journal bearing[J]. Tribology Transactions, 1994, 37 (4): 829- 835
doi: 10.1080/10402009408983365
5 许怀锦, 刘占生, 张广辉, 等 波箔片气体动压径向轴承气膜压力分布特点[J]. 轴承, 2008, 6: 23- 27
XU Huaijin, LIU Zhansheng, ZHANG Guanghui, et al Characteristics of film pressure distribution of bump foil gas bearings[J]. Bearing, 2008, 6: 23- 27
doi: 10.3969/j.issn.1000-3762.2008.01.008
6 许怀锦. 转子-箔片轴承系统动力学特性理论及试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
XU Huaijin. Theoretical and experimental research on hydrodynamic characteristics of rotor-foil bearing system [D]. Harbin: Harbin Institute of Technology, 2009.
7 LEE D H, KIM Y C, KIM K W The dynamic performance analysis of foil journal bearings considering Coulomb friction: rotating unbalance response[J]. Tribology Transactions, 2009, 52 (2): 146- 156
doi: 10.1080/10402000802192685
8 KU C R, HESHMAT H Compliant foil bearing structural stiffness analysis—part II: experimental investigation[J]. Journal of Tribology, 1993, 115 (3): 364- 369
doi: 10.1115/1.2921644
9 RADIL K, HOWARD S, DYKAS B The role of radial clearance on the performance of foil air bearings[J]. Tribology Transactions, 2002, 45 (4): 485- 490
doi: 10.1080/10402000208982578
10 LI H, GENG H, WANG B, et al Feasibility investigation of a compressor rotor supported by gas foil bearings with inhomogeneous bump foils[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236 (1): 174- 183
doi: 10.1177/13506501211004668
11 许浩杰, 高磊, 陆俊杰,等 考虑波箔变形的波箔型气体箔片轴承润滑性能的数值研究[J]. 华东理工大学学报: 自然科学版, 2020, 46 (2): 293- 300
XU Haojie, GAO Lei, LU Junjie, et al Numerical study on the lubrication performance of bump-type gas foil bearings with considering the deformation of bump foil[J]. Journal of East China University of Science and Technology, 2020, 46 (2): 293- 300
12 冯凯, 胡小强, 赵雪源, 等 三瓣式气体箔片径向轴承的静动态特性[J]. 中国机械工程, 2017, 28 (15): 1826- 1835
FENG Kai, HU Xiaoqiang, ZHAO Xueyuan, et al Static and dynamic performances of a three-pad gas foil journal bearing[J]. China Mechanical Engineering, 2017, 28 (15): 1826- 1835
doi: 10.3969/j.issn.1004-132X.2017.15.010
13 李长林. 多滑动梁径向与层叠式止推箔片气体轴承静动特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020.
LI Changlin. Static and dynamic characteristics study of multiple sliding beams journal and multi-layer thrust gas foil bearings [D]. Harbin: Harbin Institute of Technology, 2020.
14 LI C, DU J, YAO Y Study of load carrying mechanism of a novel three-pad gas foil bearing with multiple sliding beams[J]. Mechanical Systems and Signal Processing, 2020, 135: 106372
doi: 10.1016/j.ymssp.2019.106372
15 LI C, DU J, LI J, et al Linear stability and nonlinear rotor responses of the gas foil bearing with multiple sliding beams[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237: 5247- 5272
doi: 10.1177/09544062231163717
16 吴洋, 韩怡萱, 顾晨昀, 等 三瓣结构的滑梁式空气箔片轴承润滑力学建模及数值研究[J]. 华东理工大学学报: 自然科学版, 2025, 51 (1): 135- 146
WU Yang, HAN Yixuan, GU Chenyun, et al Lubrication mechanics model and numerical study of sliding beam type gas foil bearing with three-pad structure[J]. Journal of East China University of Science and Technology, 2025, 51 (1): 135- 146
17 顾晨昀, 吴洋, 韩怡萱, 等 滑梁式空气箔片轴承力学分析及疲劳寿命计算方法[J]. 华东理工大学学报: 自然科学版, 2025, 51 (2): 277- 284
GU Chenyun, WU Yang, HAN Yixuan, et al Mechanical performance and fatigue life calculation method of sliding beam air foil bearing[J]. Journal of East China University of Science and Technology, 2025, 51 (2): 277- 284
[1] 季廷炜,王亮,谢芳芳,张鑫帅,郑畅东. 基于非线性动力学稀疏辨识的涡致振动系统建模[J]. 浙江大学学报(工学版), 2025, 59(2): 402-412.
[2] 尹亚星,王彤,王承彦,张彦康,徐仕承,谭大鹏. 基于格子Boltzmann的混合过程建模与流致振动特性[J]. 浙江大学学报(工学版), 2023, 57(11): 2217-2226.
[3] 刘夏临,张晟斌,陈佺,舒恒,刘尚各. 基于TOUGH2和FLAC3D的流固弱耦合程序开发及验证[J]. 浙江大学学报(工学版), 2022, 56(8): 1485-1494.
[4] 崔允亮,李志远,魏纲,陈江,周联英. 上跨拟建隧道的地下综合管廊预保护效果[J]. 浙江大学学报(工学版), 2021, 55(2): 330-337.
[5] 喻渴来,杨贞军,张昕,刘国华,李辉. 基于孔隙压力黏结单元的准脆性材料水力劈裂模拟[J]. 浙江大学学报(工学版), 2021, 55(11): 2151-2160.
[6] 黄硕,王双强,王鹏,张桂勇. 光滑点插值法应用于流固耦合的比较研究[J]. 浙江大学学报(工学版), 2020, 54(8): 1645-1654.
[7] 王泽胜,李研彪,罗怡沁,孙鹏,陈波,郑航. 七自由度冗余混联机械臂的动力学分析[J]. 浙江大学学报(工学版), 2020, 54(8): 1505-1515.
[8] 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟[J]. 浙江大学学报(工学版), 2020, 54(6): 1106-1114.
[9] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[10] 杨春山, 魏立新, 莫海鸿, 何则干. 考虑衬砌变形与接头特征的盾构隧道纵向刚度[J]. 浙江大学学报(工学版), 2018, 52(2): 358-366.
[11] 杨超, 张怀新. 移动粒子半隐式法模拟入水冲击流固耦合问题[J]. 浙江大学学报(工学版), 2018, 52(11): 2092-2097.
[12] 姚琳, 马大为, 任杰, 姚建勇, 仲健林, 马吴宁. 高速无杆气缸作动器密封圈润滑性能分析[J]. 浙江大学学报(工学版), 2017, 51(8): 1568-1574.
[13] 杜洋, 马利, 郑津洋, 张帆, 张安达. 考虑流固耦合的管道爆炸后果预测与分析[J]. 浙江大学学报(工学版), 2017, 51(3): 429-435.
[14] 李梦暄, 吴价, 郑水英, 应光耀, 刘淑莲. 不同轴瓦结构滑动轴承-转子系统的稳定性[J]. 浙江大学学报(工学版), 2017, 51(11): 2239-2248.
[15] 张俊红,郭迁,王健,徐喆轩,陈孔武. 塑料机油冷却器盖加强筋参数的多目标优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1360-1366.