Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (11): 2217-2226    DOI: 10.3785/j.issn.1008-973X.2023.11.009
机械工程     
基于格子Boltzmann的混合过程建模与流致振动特性
尹亚星(),王彤,王承彦,张彦康,徐仕承,谭大鹏*()
浙江工业大学 机械工程学院,浙江 杭州 310014
Mixing process modeling and flow-induced vibration characteristics based on lattice Boltzmann method
Ya-xing YIN(),Tong WANG,Cheng-yan WANG,Yan-kang ZHANG,Shi-cheng XU,Da-peng TAN*()
College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(1912 KB)   HTML
摘要:

为了探究静态混合过程中的内流冲击与流致振动特性, 提出结合大涡模拟(LES)方法的介观多速度分量格子Boltzmann流固耦合模型. 针对静态混合过程伴随强剪切、回流反冲、壁面冲击等特点, 以静态混合器为研究对象, 对静态混合过程建模, 并提出流场-结构场弱耦合求解策略. 通过此方法研究静态混合器不同位置位移形变、不同入口速度和不同静态混合器叶片夹角对管壁振动响应的影响. 结果表明, 叶片作用可以将流体轴向速度转换为切向和径向速度;在入口流速相对较大时, 内部流场对静态混合器的振动频率及振幅的影响较为明显;改变混合叶片夹角, 会影响流场剪切引流作用, 对其纵向位移和轴向位移影响显著, 且主要影响低频段.

关键词: 静态混合格子Boltzmann方法(LBM)流固耦合强剪切流致振动    
Abstract:

The mesoscopic multi-velocity component lattice Boltzmann fluid-structure interaction model, combined with the large eddy simulation (LES) method, was proposed in order to investigate the in-flow shock and flow-induced vibration characteristics during static mixing. The aim is to explore the static mixing process, including characteristics such as strong shear, backflow recoil, wall impact, and other factors. Taking static mixer as the research object, the model of static mixing process was established, and the weak coupling solution strategy of flow field and structure field was proposed. The proposed method was used to study the effects of different displacement deformations, different inlet velocities and different static mixer blade angles on the vibration response of the tube wall. Results show that blade action can convert the axial velocity of the fluid into tangential and radial velocity. When the inlet velocity is relatively large, the internal flow field has obvious influence on the vibration frequency and amplitude of the static mixer. Changing the mixer blade angle will affect the shear drainage effect of the flow field, and has significant effects on the longitudinal and axial displacement, mainly in the low frequency band.

Key words: static mixing    lattice Boltzmann method (LBM)    fluid-structure interaction    intensive shear    flow-induced vibration
收稿日期: 2022-12-09 出版日期: 2023-12-11
CLC:  O 353.4  
基金资助: 国家自然科学基金资助项目(52175124);浙江省重点科学基金资助项目(LZ21E050003)
通讯作者: 谭大鹏     E-mail: yinyaxinga@163.com;tandapeng@zjut.edu.cn
作者简介: 尹亚星(1998—),男,硕士生,从事双向流固耦合、流致振动研究. orcid.org/0009-0001-1558-020X. E-mail: yinyaxinga@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
尹亚星
王彤
王承彦
张彦康
徐仕承
谭大鹏

引用本文:

尹亚星,王彤,王承彦,张彦康,徐仕承,谭大鹏. 基于格子Boltzmann的混合过程建模与流致振动特性[J]. 浙江大学学报(工学版), 2023, 57(11): 2217-2226.

Ya-xing YIN,Tong WANG,Cheng-yan WANG,Yan-kang ZHANG,Shi-cheng XU,Da-peng TAN. Mixing process modeling and flow-induced vibration characteristics based on lattice Boltzmann method. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2217-2226.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.11.009        https://www.zjujournals.com/eng/CN/Y2023/V57/I11/2217

图 1  D3Q27速度模型
图 2  LBM流固耦合计算流程图
图 3  静态混合空间结构示意图
名称 参数 数值
静态混合器 L0/mm 550
R/mm 70
h/mm 5
d/mm 10
ρ /(kg·m?3 7 850
E/GPa 210
μ 0.3
流体参数 ρw /(kg·m?3 998
μw /(Pa·s) 0.001
表 1  静态混合器和流体物理参数
图 4  流固耦合动力学模型
网格编号 M N Ar/(10?7 m)
1 500 000 102 673 1.18
2 750 000 154 432 1.09
3 1 254 000 174 300 1.04
4 1 788 900 193 246 1.05
5 2 453 800 246 321 1.04
表 2  网格无关性验证
图 5  静态混合器壁面位移曲线对比
图 6  周向监测点示意图及内部流体激励作用下静态混合器形变云图
图 7  静态混合器沿x轴方向振幅均方根
图 8  圆周方向各监测点的位移响应
图 9  不同入口速度下的流场速度分布云图
图 10  不同流速流体激励下静态混合器壁面振动响应曲线
图 11  不同夹角混合原件的流场速度分布云图
图 12  不同叶片对混合器壁面位移响应的影响
图 13  不同叶片对混合器壁面幅频响应影响
1 SOMAN S S, MADHURANTHAKAM C Effects of internal geometry modifications on the dispersive and distributive mixing in static mixers[J]. Chemical Engineering and Processing, 2017, 122: 31- 43
doi: 10.1016/j.cep.2017.10.001
2 MIRELLA C, GIUSEPPINA M, ALESSANDRO P Computational fluid dynamics modeling of corrugated static mixers for turbulent applications[J]. Industrial and Engineering Chemistry Research, 2012, 51 (49): 15986- 15996
doi: 10.1021/ie300398z
3 GHANEM A, LEMENAND T, VALLE D D, et al Static mixers: mechanisms, applications, and characterization methods: a review[J]. Chemical Engineering Research and Design, 2014, 92 (2): 205- 228
doi: 10.1016/j.cherd.2013.07.013
4 纪冲, 龙源, 方向, 等 钢质圆柱壳在侧向局部冲击荷载下的变形及失效破坏[J]. 振动与冲击, 2013, 32 (15): 121- 125
JI Chong, LONG Yuan, FANG Xiang, et al Dynamic response and perforation failure of cylindrical shell subjected to lateral local impulsive loading[J]. Journal of Vibration and Shock, 2013, 32 (15): 121- 125
5 VALDES J P, KAHOUADII L, MATAR O K. Current advances in liquid-liquid mixing in static mixers: a review. Chemical Engineering Research and Design, 2022, 177: 694-731.
6 刘晨, 崔醒, 尹德明, 等 新型静态混合器的数值模拟及优化[J]. 轻金属, 2021, (10): 19- 22
LIU Chen, CUI Xing, YIN De-ming, et al Numerical simulation and optimization of a novel static mixer[J]. Light Metals, 2021, (10): 19- 22
7 MURASIEWICZ H, JAWORSKI Z Modelowanie metodami URANS i LES przepływu dwufazowego w mieszalniku statycznym z wkładkami typu Kenics[J]. Inżynieria I Aparatura Chemiczna, 2010, (3): 79- 80
8 孟辉波, 蒙彤, 禹言芳, 等 Ross LPD型静态混合器内湍流传热与混合强化特性[J]. 化工学报, 2022, 73 (8): 3541- 3552
MENG Hui-bo, MENG Tong, YU Yan-fang, et al Turbulent heat transfer and mixing enhancement characteristics in Ross LPD Static Mixer[J]. CIESC Journal, 2022, 73 (8): 3541- 3552
9 AIDUN C K, CLAUSEN J R Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42 (1): 439- 472
doi: 10.1146/annurev-fluid-121108-145519
10 HADDADI M M, HOSSEINI S H, RASHTCHIAN D, et al Comparative analysis of different static mixers performance by CFD technique: an innovative mixer[J]. Chinese Journal of Chemical Engineering, 2020, (3): 672- 684
11 MURASIEWICZ H, ZAKRZEWSKA B Large eddy simulation of turbulent flow and heat transfer in a Kenics static mixer[J]. Chemical and Process Engineering, 2019, 40 (1): 87- 99
12 孟辉波, 禹言芳, 吴剑华, 等 静态混合器内瞬态壁压波动特性实验研究[J]. 哈尔滨工程大学学报, 2011, 32 (5): 690- 696
MENG Hui-bo, YU Yan-fang, WU Jian-hua, et al Experimental research on the fluctuation characteristics of instantaneous tube-pressure signals in a static mixer[J]. Journal of Harbin Engineering University, 2011, 32 (5): 690- 696
13 NIKOLIC M, RAJKOVIC M Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends[J]. Journal of Fluids and Structures, 2005, 22 (2): 173- 195
14 LECLAIRE S, VIDAL D, FRADETTE L, et al Validation of the pressure drop-flow rate relationship predicted by lattice Boltzmann simulations for immiscible liquid-liquid flows through SMX static mixers[J]. Chemical Engineering Research and Design: Transactions of the Institution of Chemical Engineers, 2020, 153: 350- 368
doi: 10.1016/j.cherd.2019.10.035
15 权登辉, 杨晓军, 刘龙, 等 Kenics型静态混合器性能优化的数值与应用分析[J]. 化工机械, 2021, 48 (2): 203- 208
QUAN Deng-hui, YANG Xiao-jun, LIU Long, et al Numerical and application analysis of performance optimization of Kenics static mixer[J]. Chemical Engineering and Machinery, 2021, 48 (2): 203- 208
16 禹言芳, 陈雅鑫, 孟辉波, 等 Lightnin静态混合器内纳米流体湍流传热特性分析[J]. 化工进展, 2021, 40 (Suppl. 2): 30- 39
YU Yan-fang, CHEN Ya-xin, MENG Hui-bo, et al Analysis of turbulent heat transfer characteristics of nanofluids in the Lightnin static mixer[J]. Chemical Industry and Engineering Progress, 2021, 40 (Suppl. 2): 30- 39
17 SUGA K, KUWATA Y, TAKASHIMA K, et al A D3Q27 multiple-relaxation-time lattice Boltzmann method for turbulent flows[J]. Computers and Mathematics with Applications, 2015, 69 (6): 518- 529
doi: 10.1016/j.camwa.2015.01.010
18 D’HUMIERES B D. Generalized lattice-Boltzmann equations [C]// 18th International Symposium, Rarefied Gas Dynamics. Vancouver: American Institute of Aeronautics and Astronautics, 1994: 450-458.
19 穆罕默德·阿卜杜勒马吉德. 格子玻尔兹曼方法[M]. 杨大勇, 译. 北京: 电子工业出版社, 2015.
20 陈艳燕. 晶格玻尔兹曼方法研究固液界面特征下的血液流[D]. 上海: 中国科学院上海应用物理研究所, 2008.
CHEN Yan-yan. Study of blood flow at solid-liquid interface based on lattice Boltzmann method[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2008.
21 NEWMARK N M A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division Asce, 1959, 85 (1): 67- 94
doi: 10.1061/JMCEA3.0000081
22 YU D Z, MEI R W, LUO L S, et al Viscous flow computations with the method of lattice Boltzmann equation[J]. Progress in Aerospace Sciences, 2003, 39 (5): 329- 367
doi: 10.1016/S0376-0421(03)00003-4
[1] 刘夏临,张晟斌,陈佺,舒恒,刘尚各. 基于TOUGH2和FLAC3D的流固弱耦合程序开发及验证[J]. 浙江大学学报(工学版), 2022, 56(8): 1485-1494.
[2] 喻渴来,杨贞军,张昕,刘国华,李辉. 基于孔隙压力黏结单元的准脆性材料水力劈裂模拟[J]. 浙江大学学报(工学版), 2021, 55(11): 2151-2160.
[3] 黄硕,王双强,王鹏,张桂勇. 光滑点插值法应用于流固耦合的比较研究[J]. 浙江大学学报(工学版), 2020, 54(8): 1645-1654.
[4] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[5] 杨超, 张怀新. 移动粒子半隐式法模拟入水冲击流固耦合问题[J]. 浙江大学学报(工学版), 2018, 52(11): 2092-2097.
[6] 杜洋, 马利, 郑津洋, 张帆, 张安达. 考虑流固耦合的管道爆炸后果预测与分析[J]. 浙江大学学报(工学版), 2017, 51(3): 429-435.
[7] 李梦暄, 吴价, 郑水英, 应光耀, 刘淑莲. 不同轴瓦结构滑动轴承-转子系统的稳定性[J]. 浙江大学学报(工学版), 2017, 51(11): 2239-2248.
[8] 张俊红,郭迁,王健,徐喆轩,陈孔武. 塑料机油冷却器盖加强筋参数的多目标优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1360-1366.
[9] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[10] 刘震涛, 陈思南, 黄瑞, 尹旭, 俞小莉, 魏志明, 张全中. 高功率密度柴油机气缸盖热负荷分析与优化[J]. 浙江大学学报(工学版), 2015, 49(8): 1544-1552.
[11] 张焕宇,郝志勇,郑旭. 柴油机冷却系统散热性能优化设计[J]. J4, 2014, 48(1): 70-75.
[12] 卢旦,李承铭. 基于嵌入空间变形体法的流固耦合网格更新[J]. J4, 2013, 47(3): 508-514.
[13] 杨宏康, 高博青. 基于Floquet理论的储液罐动力稳定性分析[J]. J4, 2013, 47(2): 378-384.
[14] 李强, 刘淑莲, 应光耀, 郑水英. 考虑流固耦合作用的PET瓶跌落碰撞数值仿真[J]. J4, 2012, 46(6): 980-986.
[15] 李强, 刘淑莲, 于桂昌, 潘晓弘, 郑水英. 非线性转子-轴承耦合系统润滑及稳定性分析[J]. J4, 2012, 46(10): 1729-1736.