Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (11): 2151-2160    DOI: 10.3785/j.issn.1008-973X.2021.11.016
土木与建筑工程     
基于孔隙压力黏结单元的准脆性材料水力劈裂模拟
喻渴来1(),杨贞军2,*(),张昕1,刘国华1,李辉2
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 武汉大学 土木建筑工程学院 湖北省岩土与结构安全重点实验室,湖北 武汉 430072
Hydraulic fracturing modeling of quasi-brittle materials based on pore pressure cohesive interface elements
Ke-lai YU1(),Zhen-jun YANG2,*(),Xin ZHANG1,Guo-hua LIU1,Hui LI2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Hubei Key Laboratory of Geotechnical and Structural Safety, School of Civil Engineering, Wuhan University, Wuhan 430072, China
 全文: PDF(2253 KB)   HTML
摘要:

传统数值方法对水力劈裂的模拟一般采用预设裂缝扩展路径,且将水流作用等效为压力荷载,难以反映裂缝渗流-开裂耦合效应. 采用自编程Python脚本程序批量插入孔隙压力黏结单元,考虑裂缝渗流-开裂耦合作用模拟准脆性材料水力劈裂随机扩展全过程. 在对经典理论模型及试验结果模拟验证的基础上,开展含多裂缝均质模型的水力劈裂全过程分析,并进一步建立混凝土细观尺度水力劈裂模型,分析骨料、界面过渡区和基体渗透性对混凝土劈裂全过程的影响. 结果表明,本研究模型可以有效模拟准脆性材料水力劈裂失效过程,准脆性材料多缝开裂过程伴随微裂缝的分叉扩展而非光滑的裂缝扩展路径,骨料及界面过渡区影响劈裂扩展路径造成裂缝分叉出现,混凝土基体的渗透性对其抵抗水力劈裂不利并影响失效软化过程.

关键词: 混凝土水力劈裂流固耦合黏结单元孔隙压力Python脚本程序ABAQUS    
Abstract:

In traditional numerical methods, pre-defined crack paths are often assumed and flow effects of fluids are often simplified as equivalent pressure loads on the crack when modelling hydraulic fracture, which makes it difficult to reflect the coupling effects of seepage and fracture. In this study, a highly efficient Python code was developed to insert pore pressure cohesive interface elements into the solid finite element mesh, and the coupling mechanism of seepage-fracture was considered to model the complicated hydraulic fracture process in quasi-brittle materials. The effectiveness of the model was validated by the simulations of the classic theoretical model and experimental results. Furthermore, the whole process of hydraulic fracture with multiple pre-existing cracks was simulated, the meso-scale hydraulic fracture model of concrete was established, and the influences of aggregates, interface transition zone and permeability of matrix were analyzed. Results show that the developed model can reliably simulate complicated hydraulic fracture problems of quasi-brittle materials, the multi-crack propagation is accompanied by the bifurcation propagation of micro cracks rather than smooth crack propagation trajectory. The aggregates and interface transition zone affect the fracture trajectory, and the bifurcation of crack is generated. The permeability of concrete matrix affects its resistance of hydraulic fracture and failure softening process.

Key words: concrete    hydraulic fracture    fluid-structure interaction    cohesive element    pore pressure    Python script    ABAQUS
收稿日期: 2020-12-28 出版日期: 2021-11-05
CLC:  TU 528  
基金资助: 国家自然科学基金资助项目(51974202,51779222,51979244)
通讯作者: 杨贞军     E-mail: yukl1993@126.com;zhjyang@whu.edu.cn
作者简介: 喻渴来(1993—),男,博士生,从事混凝土断裂和多尺度模拟研究. orcid.org/0000-0001-8809-2365. E-mail: yukl1993@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
喻渴来
杨贞军
张昕
刘国华
李辉

引用本文:

喻渴来,杨贞军,张昕,刘国华,李辉. 基于孔隙压力黏结单元的准脆性材料水力劈裂模拟[J]. 浙江大学学报(工学版), 2021, 55(11): 2151-2160.

Ke-lai YU,Zhen-jun YANG,Xin ZHANG,Guo-hua LIU,Hui LI. Hydraulic fracturing modeling of quasi-brittle materials based on pore pressure cohesive interface elements. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2151-2160.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.11.016        https://www.zjujournals.com/eng/CN/Y2021/V55/I11/2151

图 1  裂缝内流体流动模式
图 2  孔隙压力黏结单元插设过程
图 3  黏结单元本构关系曲线
图 4  KGD水力劈裂问题
图 5  KGD算例模型网格和边界条件
材料 参数 取值
基体 E/GPa 17
ν 0.2
流体 μ/(Pa·s) 0.1
q/(mm2·s?1) 103
COH2D4P单元 $ t_{\text{n}}^0 $/MPa $0.9$
Gn C /Gs C/(N·mm?1) 0.05
表 1  KGD模型材料参数
图 6  KGD算例的数值模拟结果
图 7  劈拉试件的尺寸和加载设置
图 8  模型的网格和劈裂结果
图 9  不同水压作用下劈裂荷载与裂缝口张开位移的关系曲线
图 10  已有裂隙对水力劈裂扩展的影响
图 11  预设单裂隙的水力劈裂过程
图 12  垂直裂缝内的净压力分布(t=146.1 s)
图 13  预设多裂隙对水力劈裂扩展的影响
图 14  预设多裂隙的水力劈裂过程
图 15  混凝土细观尺度水力劈裂模型
图 16  混凝土水力劈裂扩展结果
1 JIA J S, LI X, ZHENG C Y Studies on safety problem of high gravity dams higher than 200 m with consideration of hydraulic fracturing under water pressure[J]. Journal of Hydraulic Engineering, 2006, 37 (12): 1509- 1515
2 BRUHWILER E, SAOUMA V E Water fracture interaction in concrete. part I: fracture properties[J]. Aci Materials Journal, 1995, 92 (3): 296- 303
3 BRUHWILER E, SAOUMA V E Water fracture interaction in concrete. Part II: hydrostatic pressure in crack[J]. Aci Materials Journal, 1995, 92 (4): 383- 390
4 SLOWIK V, SAOUMA V E Water pressure in propagating concrete cracks[J]. Journal of Structural Engineering, 2000, 126 (2): 235- 242
doi: 10.1061/(ASCE)0733-9445(2000)126:2(235)
5 徐世烺, 王建敏 静水压力下混凝土双K断裂参数试验测定[J]. 水利学报, 2007, 38 (7): 792- 798
XU Shi-lang, WANG Jian-min Experimental determination of double-K fracture parameters of concrete under water pressure[J]. ShuiLi XueBao, 2007, 38 (7): 792- 798
doi: 10.3321/j.issn:0559-9350.2007.07.005
6 杜成斌, 陈小翠, 陈玉泉, 等 混凝土水力劈裂试验研究[J]. 水利学报, 2017, 48 (9): 1047- 1054
DU Cheng-bin, CHEN Xiao-cui, CHEN Yu-quan, et al Experimental research on hydraulic fracture of concrete[J]. ShuiLi XueBao, 2017, 48 (9): 1047- 1054
7 甘磊, 沈心哲, 王瑞, 等 单裂缝混凝土结构水力劈裂试验[J]. 水利水电科技进展, 2017, 37 (4): 30- 35
GAN Lei, SHEN Xin-zhe, WANG Rui, et al Hydraulic fracturing test of concrete structures with single crack[J]. Advances in Science and Technology of Water Resources, 2017, 37 (4): 30- 35
doi: 10.3880/j.issn.1006-7647.2017.04.006
8 甘磊, 沈振中, 张腾, 等 混凝土结构水力劈裂试验装置研究及应用[J]. 水利与建筑工程学报, 2015, 13 (4): 130- 136
GAN Lei, SHEN Zhen-zhong, ZHANG Teng, et al Research and application of a hydraulic fracturing test device for concrete structures[J]. Journal of Water Resources and Architectural Engineering, 2015, 13 (4): 130- 136
doi: 10.3969/j.issn.1672-1144.2015.04.026
9 REN Q W, DONG Y W, YU T T Numerical modeling of concrete hydraulic fracturing with extended finite element method[J]. Science in China Series E, 2009, 52 (3): 559- 565
doi: 10.1007/s11431-009-0058-8
10 GORDELIY E, PEIRCE A Coupling schemes for modeling hydraulic fracture propagation using the XFEM.[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 305- 322
doi: 10.1016/j.cma.2012.08.017
11 FANG X J, JIN F Coupling model for interaction between fissure water and cracking in concrete[J]. Journal of Hydraulic Engineering, 2007, 38 (12): 1466- 1474
12 WANG K F, ZHANG Q, XIA X Z Modeling of hydraulic fracturing for concrete gravity dams under fluid structure interaction[J]. Applied Mathematics and Mechanics, 2015, 36 (9): 970- 980
13 SHENG M, LI G S Extended finite element modeling of hydraulic fracture propagation[J]. Engineering Mechanics, 2014, 31 (10): 123- 128
14 GUO J C, ZHAO X, ZHU H Y, et al Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 180- 188
doi: 10.1016/j.jngse.2015.05.008
15 GUO J C, LUO B, LAI J, et al Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method[J]. Engineering Fracture Mechanics, 2017, 186: 195- 207
doi: 10.1016/j.engfracmech.2017.10.013
16 SEGURA J M, CAROL I Numerical modeling of pressurized fracture evolution in concrete using zero-thickness interface elements[J]. Engineering Fracture Mechanics, 2010, 77 (9): 1386- 1399
doi: 10.1016/j.engfracmech.2010.03.014
17 YAO F, YANG Z J, HU Y J An SBFEM-based model for hydraulic fracturing in quasi-brittle materials[J]. Acta Mechanica Solida Sinica, 2018, 31 (4): 416- 432
doi: 10.1007/s10338-018-0029-3
18 SU X T, YANG Z J, CHEN J F, et al Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials[J]. International Journal of Solids and Structures, 2009, 46 (17): 3222- 3234
doi: 10.1016/j.ijsolstr.2009.04.013
19 SU X T, YANG Z J, LIU G H Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study[J]. International Journal of Solids and Structures, 2010, 47 (17): 2336- 2345
doi: 10.1016/j.ijsolstr.2010.04.031
20 SU X T, YANG Z J, LIU G H Finite element modelling of complex 3D static and dynamic crack propagation by embedding cohesive elements in Abaqus[J]. Acta Mechanica Solida Sinica, 2010, 23 (3): 271- 282
doi: 10.1016/S0894-9166(10)60030-4
21 LI Y, LIU W, DENG J, et al A 2D explicit numerical scheme–based pore pressure cohesive zone model for simulating hydraulic fracture propagation in naturally fractured formation[J]. Energy Science and Engineering, 2019, 7 (1): 1527- 1543
22 VINH P N, HAOJIE L, TIMON R, et al Modelling hydraulic fractures in porous media using flow cohesive interface elements[J]. Engineering Geology, 2017, 225: 68- 82
doi: 10.1016/j.enggeo.2017.04.010
23 ECONOMIDES M J, NOLTE K G. Reservoir stimulation [M]. Old Tappan: Wiley Chichester, 2000.
24 PEIRCE A, DETOURNAY E An implicit level set method for modeling hydraulically driven fractures[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197 (33): 2858- 2885
25 BARANI O R, MAJIDAIE S, MOSALLANEJAD M Numerical modeling of water pressure in propagating concrete cracks[J]. Journal of Engineering Mechanics, 2016, 142 (4): 04016011
doi: 10.1061/(ASCE)EM.1943-7889.0001048
26 ZIENKIEWICZ O C, CHAN A H C, PASTOR M, et al. Computational geomechanics with special reference to earthquake engineering [M]. New York: Wiley, 1999.
27 GEERTSMA, J, HAAFKENS R A comparison of the theories for predicting width and extent of vertical hydraulically induced fractures[J]. Journal of Energy Resources Technology, 1979, 101 (1): 8- 19
doi: 10.1115/1.3446866
28 LIU C, SHEN Z Z, GAN L, et al A hybrid finite volume and extended finite element method for hydraulic fracturing with cohesive crack propagation in quasi-brittle materials[J]. Materials, 2018, 11: 1921- 1932
doi: 10.3390/ma11101921
29 SHI F, WANG X, LIU C, et al An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures[J]. Engineering Fracture Mechanics, 2017, 173: 64- 90
doi: 10.1016/j.engfracmech.2017.01.025
30 REN W, YANG Z J, SHARMA R, et al Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete[J]. Engineering Fracture Mechanics, 2015, 133: 24- 39
[1] 高鹏,曾学波,吴宜龙,彭飞. 碳纤维布约束型钢混凝土矩形柱轴压承载力[J]. 浙江大学学报(工学版), 2022, 56(5): 890-900, 908.
[2] 马志元,刘江,刘永健,吕毅,张国靖. 钢-混组合梁桥有效温度取值的地域差异性[J]. 浙江大学学报(工学版), 2022, 56(5): 909-919.
[3] 冯帅克,郭正兴,倪路瑶,李国建,宫长义,谢超,满建政. 钢管混凝土柱-混合梁节点抗震性能试验研究[J]. 浙江大学学报(工学版), 2021, 55(8): 1464-1472.
[4] 韩兴博,叶飞,梁晓明,冯浩岚,王蕾,夏永旭. 公路隧道钢筋混凝土衬砌碳化耐久性区划[J]. 浙江大学学报(工学版), 2021, 55(8): 1436-1443.
[5] 孙一李全,赵羽习,孟涛,韦华栋,张云财. 再生砖混骨料混凝土柱的小偏心受压性能[J]. 浙江大学学报(工学版), 2021, 55(6): 1090-1099.
[6] 谢磊,李庆华,徐世烺. 活性粉末混凝土冲击压缩性能及本构关系[J]. 浙江大学学报(工学版), 2021, 55(5): 999-1009.
[7] 王小虎,吉克尼都,陈珊,祁宇轩,彭宇,曾强. X射线透射成像技术原位追踪混凝土吸水过程[J]. 浙江大学学报(工学版), 2021, 55(4): 727-732.
[8] 宋鑫,樊玮洁,毛江鸿,金伟良. 基于多级电迁的混凝土内氯离子动态控制效果[J]. 浙江大学学报(工学版), 2021, 55(3): 511-518.
[9] 李睿鑫,邹贻权,胡大伟,周辉,王冲,周永祥,王祖琦. 高渗透压-硫酸盐侵蚀下混凝土时空劣化[J]. 浙江大学学报(工学版), 2021, 55(3): 539-547.
[10] 张静,邹道勤,王海龙,孙晓燕. 3D打印混凝土层条间界面抗拉性能与本构模型[J]. 浙江大学学报(工学版), 2021, 55(11): 2178-2185.
[11] 姚勇,杨贞军,张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9.
[12] 葛培,黄炜,李萌. 再生砖骨料混凝土架构模型试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 10-19.
[13] 黄康桥,赵程,周伟,刘杏红,马刚. 基于多场耦合模型的混凝土冻融三维细观研究[J]. 浙江大学学报(工学版), 2021, 55(1): 62-70.
[14] 黄硕,王双强,王鹏,张桂勇. 光滑点插值法应用于流固耦合的比较研究[J]. 浙江大学学报(工学版), 2020, 54(8): 1645-1654.
[15] 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟[J]. 浙江大学学报(工学版), 2020, 54(6): 1106-1114.