Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (6): 1106-1114    DOI: 10.3785/j.issn.1008-973X.2020.06.007
土木工程     
基于HJC模型的盾构刀具切削混凝土数值模拟
苏伟林1,2(),李兴高1,2,*(),许宇2,3,金大龙1,2
1. 北京交通大学 城市地下工程教育部重点实验室,北京 100044
2. 北京交通大学 土木建筑工程学院,北京 100044
3. 中铁第一勘察设计院集团有限公司,陕西 西安 710043
Numerical simulation of shield tool cutting concrete based on HJC model
Wei-lin SU1,2(),Xing-Gao LI1,2,*(),Yu XU2,3,Da-long JIN1,2
1. Key Laboratory of Urban Underground Engineering of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
2. School of Civil Engineering, Beijing Jiaotong University, Beijing, 100044, China
3. China Railway First Survey and Design Institute Group Co. Ltd, Xi’an 710043, China
 全文: PDF(1749 KB)   HTML
摘要:

为了揭示盾构刀具切削混凝土材料时的阻力大小及变化规律,研究Holmquist-Johnson-Cook动态本构模型(HJC模型)参数的确定方法,并据此对混凝土受切削破坏过程进行数值模拟. 设计室内混凝土试块切削试验,根据试验结果对HJC模型参数进行修正,进一步计算分析切削速度与切削深度对切削阻力的影响. 研究表明,基于HJC模型的数值计算结果可基本反映盾构刀具切削混凝土的阻力大小及变化规律;刀具在切入混凝土表面时,法向切削阻力的波动幅度较大,在切削接近试块自由面时会出现剩余材料整块脱落、切削力骤降为0的现象,该过程在数值模拟中相对平缓;在相同条件下,率效应参数主要影响法向切削阻力的波动幅度,损伤参数则同时影响法向切削阻力的平均值与波动幅度;法向切削阻力随切削速度呈指数形式增加,随切削深度呈线性增加;HJC模型可反映混凝土压碎破坏与材料应变率间的关系及法向切削阻力随深度的线性叠加效应.

关键词: 盾构刀具混凝土切削HJC模型切削阻力数值计算    
Abstract:

The parameter determination of Holmquist-Johnson-Cook dynamic constitutive model (HJC Model) was analyzed, and the failure process of concrete under cutting was numerically simulated based on the HJC Model to reveal the cutting resistance and its variation when the concrete was cut by shield tools. A concrete block cutting test was designed to correct the parameters of the HJC Model, and then the influence of cutting speed and depth on cutting resistance were further studied. Results show that the calculation results of the numerical simulation based on HJC Model can preliminarily reflect the cutting resistance and its variation. The initial normal resistance fluctuates sharply when the cutting tool cuts into the concrete surface, while the remaining material will fall off and the cutting force will suddenly drop to zero when the cutting tool approaches the free surface of the test block, and this progress is relatively gentle in the numerical simulation. The rate effect parameter mainly affects the fluctuation range of normal cutting resistance, while the damage parameter affects both the average value and the fluctuation range. Normal cutting resistance increases exponentially with cutting speed and increases linearly with cutting depth. The HJC model can reflect the relationship between concrete crushing failure and material strain rate as well as the linear superposition effect of the normal cutting resistance due to the cutting depth.

Key words: shield cutting tool    concrete cutting    HJC Model    cutting resistance    numerical calculation
收稿日期: 2019-03-04 出版日期: 2020-07-06
CLC:  TU 921  
基金资助: 中央高校基本科研业务费专项资助(2019YJS144)
通讯作者: 李兴高     E-mail: suwelin@126.com;lixg@bjtu.edu.cn
作者简介: 苏伟林(1990—),男,博士生,从事盾构法隧道掘进研究. orcid.org/0000-0001-7022-6695. E-mail: suwelin@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
苏伟林
李兴高
许宇
金大龙

引用本文:

苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟[J]. 浙江大学学报(工学版), 2020, 54(6): 1106-1114.

Wei-lin SU,Xing-Gao LI,Yu XU,Da-long JIN. Numerical simulation of shield tool cutting concrete based on HJC model. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1106-1114.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.06.007        http://www.zjujournals.com/eng/CN/Y2020/V54/I6/1106

图 1  HJC强度模型
图 2  HJC损伤模型
图 3  HJC模型状态方程
图 4  HJC模型的关键字文件选项卡
图 5  HJC极限面与Mohr-Coulomb准则包络线
图 6  强度参数试验拟合
图 7  状态方程参数Hugoniot试验拟合
图 8  率效应参数C拟合
图 9  混凝土试块切削试验
参数类型 符号 数值 单位
基本参数 ρ 2110 kg/m3
G 8.75×103 MPa
T 1.62 MPa
fc 24.45 MPa
率效应参数 C 0.012 ?
ESP0 1.0 ?
强度参数 A 0.272 ?
B 1.50 ?
N 0.87 ?
SFMAX 20 ?
状态方程参数 p1 1.78×103 MPa
pc 8.15 MPa
μl 0.16 ?
μc 6.99×10?4 ?
K1 9.23 GPa
K2 141.24 GPa
K3 136.50 GPa
损伤参数 D1 0.04 ?
D2 1.0 ?
EFMIN 0.01 ?
表 1  混凝土HJC模型参数取值
图 10  混凝土切削受力分析示意图
图 11  混凝土切削有限元模型
图 12  混凝土切削塑性区动态分布
图 13  法向切削阻力随时间变化曲线
图 14  应变率影响参数取不同值时法向切削阻力随时间变化曲线
图 15  损伤常数取不同值时法向切削阻力随时间变化曲线
图 16  不同切削速度时法向切削阻力随时间变化曲线
图 17  法向切削阻力均值随切削速度变化曲线
图 18  不同切削深度时法向切削阻力随时间变化曲线
图 19  法向切削阻力随切削深度变化曲线
1 宋青君, 王卫东, 周健 考虑地铁盾构隧道穿越影响的桩基和基坑支护设计[J]. 岩土工程学报, 2010, (Suppl. 2): 314- 318
SONG Qing-jun, WANG Wei-dong, ZHOU Jian Design of foundation and excavation engineering considering influence of tunnel shield construction[J]. Chinese Journal of Geotechnical Engineering, 2010, (Suppl. 2): 314- 318
2 程康, 夏唐代, 梁荣柱, 等 盾构开挖下邻近既有桩基的竖向响应分析[J]. 岩土工程学报, 2018, 40 (Suppl. 2): 42- 46
CHENG Kang, XIA Tang-dai, LIANG Rong-zhu, et al Vertical response analysis of adjacent existing single pile under tunneling[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (Suppl. 2): 42- 46
3 曹宝飞, 朱逢斌 盾构隧道邻近地下连续墙围护结构施工影响研究[J]. 防灾减灾工程学报, 2017, 37 (6): 931- 937
CAO Bao-fei, ZHU Feng-bin The impact due to shield tunnel adjacent the existing foundation pit[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37 (6): 931- 937
4 袁大军, 王飞. 盾构切削大直径钢筋混凝土群桩的理论与实践[M]. 北京: 科学出版社, 2017.
5 R?NMAN K E A model describing rock cutting with conical picks[J]. Rock Mechanics and Rock Engineering, 1985, 18 (2): 131- 140
doi: 10.1007/BF01019602
6 UCGUL M, FIELKE J M, SAUNDERS C Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling[J]. Information Processing in Agriculture, 2015, 2 (2): 130- 141
doi: 10.1016/j.inpa.2015.07.001
7 叶勇, 沈剑云 岩石切削过程中破坏机制的离散元分析[J]. 工具技术, 2008, 42 (12): 29- 32
YE Yong, SHEN Jian-yun Study on failure mechanics in rock cutting process with distinct element method[J]. Tool Engineering, 2008, 42 (12): 29- 32
doi: 10.3969/j.issn.1000-7008.2008.12.007
8 王飞. 盾构直接掘削大直径钢筋混凝土群桩研究[D]. 北京: 北京交通大学, 2014.
WANG Fei. Study on shield cutting large diameter reinforced concrete piles directly[D]. Beijing: Beijing Jiaotong University, 2014.
9 周里群, 关汗青, 李军 基于三维离散元法的沥青混凝土切削过程数值分析[J]. 机械设计与研究, 2015, 31 (6): 83- 86
ZHOU Li-qun, GUAN Han-qing, LI Jun Cutting numerical study for asphalt concrete-based on 3d discrete element method[J]. Machine Design and Research, 2015, 31 (6): 83- 86
10 HOLMQUIST T J, JOHNSON G R A computational constitutive model for glass subjected to large strains, high strain rates and high pressures[J]. Journal of Applied Mechanics, 2011, 78 (5): 051003
doi: 10.1115/1.4004326
11 Livermore Software Technology Corporation. LS-DYNA keywords user’s manual (version 971/Rev5) [M]. California: Livermore Software Technology Corporation, 2010: 467-469.
12 中国建筑科学研究院. 普通混凝土力学性能试验方法标准GB/T 50081-2002 [S]. 北京: 中国建筑工业出版社, 2003.
13 杨同, 徐川, 王宝学, 等 岩土三轴试验中的粘聚力与内摩擦角[J]. 中国矿业, 2007, 16 (12): 104- 107
YANG Tong, XU Chuan, WANG Xue-bao, et al The cohesive strength and the friction angle in rock-soil triaxial rests[J]. China Mining Magazine, 2007, 16 (12): 104- 107
doi: 10.3969/j.issn.1004-4051.2007.12.032
14 王永刚, 张远平, 王礼立 C30混凝土冲击绝热关系和Grüneisen型状态方程的实验研究[J]. 物理学报, 2008, 57 (12): 7789- 7793
WANG Yong-gang, ZANG Yuan-ping, WANG Li-li Experimental study on the shock Hugoniot relationship and the Grüneisen-type equation of state for C30 concrete[J]. Acta Physica Sinica, 2008, 57 (12): 7789- 7793
doi: 10.3321/j.issn:1000-3290.2008.12.061
15 GRADY D Shock equation of state properties of concrete[J]. Transactions on the Built Environment, 1996, 22 (1): 405- 414
16 高飞, 王明洋, 张先锋, 等 水泥砂浆的平板撞击实验与高压状态方程研究[J]. 振动与冲击, 2018, 37 (12): 41- 47
GAO Fei, WANG Ming-yang, ZHANG Xian-feng, et al A study on planar impact and equation of sate for cement mortar[J]. Journal of Vibration and Shock, 2018, 37 (12): 41- 47
17 熊益波, 陈剑杰, 胡永乐, 等 混凝土Johnson-Holmquist本构模型关键参数研究[J]. 工程力学, 2012, 29 (1): 121- 127
XIONG Yi-bo, CHEN Jian-jie, HU Yong-le, et al Study on the key parameters of the Johnson-Holmquist Constitutive Model for concrete[J]. Engineering Mechanics, 2012, 29 (1): 121- 127
18 林皋, 闫东明, 肖诗云, 等 应变速率对混凝土特性及工程结构地震响应的影响[J]. 土木工程学报, 2005, 38 (11): 1- 8
LIN Gao, YAN Dong-ming, XIAO Shi-yun, et al Strain rate effects on the behavior of concrete and the seismic response of concrete structure[J]. China Civil Engineering Journal, 2005, 38 (11): 1- 8
doi: 10.3321/j.issn:1000-131X.2005.11.001
19 闫东明, 林皋, 徐平 三向应力状态下混凝土动态强度和变形特性研究[J]. 工程力学, 2007, 24 (3): 58- 64
YAN Dong-ming, LIN Gao, XU Ping Dynamic strength and deformation of concrete in triaxial stress state[J]. Engineering Mechanics, 2007, 24 (3): 58- 64
doi: 10.3969/j.issn.1000-4750.2007.03.010
20 肖诗云, 林皋, 逯静洲, 等 应变率对混凝土抗压特性的影响[J]. 哈尔滨建筑大学学报, 2002, 35 (5): 35- 39
XIAO Shi-yun, LIN Gao, LU Jing-zhou, et al Effect of strain rate on dynamic behavior of concrete in compression[J]. Journal of Harbin University of Civil Engineering and Architecture, 2002, 35 (5): 35- 39
21 董毓利, 谢和平 不同应变率下混凝土受压全过程的实验研究及其本构模型[J]. 水利学报, 1997, 28 (7): 72- 77
DONG Yu-li, XIE He-ping Experimental study and constitutive model on concrete under compression with different strain rate[J]. Journal of Hydraulic Engeering, 1997, 28 (7): 72- 77
doi: 10.3321/j.issn:0559-9350.1997.07.013
22 GARY G, BAILLY P Behaviour of quasi-brittle material at high strain rate. Experiment and modelling[J]. European Journal of Mechanics-A/Solids, 1998, 17 (3): 403- 420
doi: 10.1016/S0997-7538(98)80052-1
23 孙吉书, 窦远明, 周戟, 等 应变速率对混凝土抗压特性影响的试验研究[J]. 混凝土与水泥制品, 2011, 38 (5): 1- 3
SUN Ji-shu, DOU Yuan-ming, ZHOU Ji, et al Experimental investigation on effect of strain rate on the compressive properties of concrete[J]. China Concrete and Cement Products, 2011, 38 (5): 1- 3
doi: 10.3969/j.issn.1000-4637.2011.05.001
[1] 崔允亮,李志远,魏纲,陈江,周联英. 上跨拟建隧道的地下综合管廊预保护效果[J]. 浙江大学学报(工学版), 2021, 55(2): 330-337.
[2] 杨春山, 魏立新, 莫海鸿, 何则干. 考虑衬砌变形与接头特征的盾构隧道纵向刚度[J]. 浙江大学学报(工学版), 2018, 52(2): 358-366.
[3] 何方祥, 詹树林, 钱晓倩, 赖俊英. 平屋顶遮阳通风层隔热的数值模拟分析[J]. 浙江大学学报(工学版), 2015, 49(12): 2397-2402.
[4] 谭超, 魏正英, 胡福胜, 李本强, 韩志海. 等离子喷涂过程数值计算与实验研究[J]. 浙江大学学报(工学版), 2014, 48(12): 2284-2292.
[5] 黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.
[6] 黄家海,邱敏秀,方文敏. 液黏调速离合器中摩擦副间隙内流体传热分析[J]. J4, 2011, 45(11): 1934-1940.
[7] 钟毅 高翔 骆仲泱 王惠挺 霍旺 岑可法. 湿法烟气脱硫系统脱硫效率的影响因素[J]. J4, 2008, 42(5): 890-894.