Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (3): 511-518    DOI: 10.3785/j.issn.1008-973X.2021.03.011
土木与交通工程     
基于多级电迁的混凝土内氯离子动态控制效果
宋鑫1,2(),樊玮洁2,*(),毛江鸿2,金伟良1,2
1. 浙江大学 结构工程研究所,浙江 杭州 310058
2. 浙大宁波理工学院 土木建筑工程学院,浙江 宁波 315100
Dynamic control effect of chloride in concrete based on multi-level electromigration
Xin SONG1,2(),Wei-jie FAN2,*(),Jiang-hong MAO2,Wei-liang JIN1,2
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. School of Engineering and Architecture, NingboTech University, Ningbo 315100, China
 全文: PDF(1148 KB)   HTML
摘要:

为了高效排除钢筋附近与保护层内的氯离子,预埋碳纤维网作为内置电极对氯盐环境下的混凝土试件进行多级电迁的试验,研究其除氯效果. 利用碘离子迁移特征试验对离子迁移过程作直观效果反映,评价多级电迁对离子的迁移功能. 通过设置不同层数内置电极,定量研究电迁后试件内残余氯离子质量分数与空间分布. 结合既有结构氯离子质量分数调研数据,讨论基于多级电迁的混凝土结构长寿命防护策略. 结果表明:多级电迁对氯离子控制效果更显著,三级电迁作用下保护层除氯效果分别是两级电迁和单级电迁的1.20倍与2.26倍.

关键词: 混凝土耐久性电化学修复多级电迁氯离子均匀性    
Abstract:

An embedded carbon fiber net was used as the built-in electrode to carry out the electromigration repair of the concrete specimen in the chloride environment and eliminate the chloride ions near the reinforcement and in the concrete cover. The characteristic test of iodine ion migration was used to reflect the process of ion migration, and to evaluate the relay function of multi-level migration to ion migration. The concentration and spatial distribution of residual chloride ions in the repaired samples were quantitatively studied by setting different layers of built-in electrodes. The long-life protection strategy of concrete structures based on multi-level electrical migration was discussed combined with the investigation data of chloride concentration of existed structures. Experimental results show that the control effect of chloride of multi-level electromigration is more significant than that of direct electromigration. The chlorine removal efficiency of three-level electromigration is 1.20 times and 2.26 times of two-level electromigration and single-level electromigration, respectively.

Key words: concrete durability    electromigration    multi-level electromigration    chloride    uniformity
收稿日期: 2020-02-05 出版日期: 2021-04-25
CLC:  TU 375  
基金资助: 国家自然科学基金资助项目(51638013,51878610,51820105012),浙江省自然科学基金资助项目(LY18E080003,LQ19E080011,LQ19E080012)
通讯作者: 樊玮洁     E-mail: 21712181@zju.edu.cn;fanwj@nit.zju.edu.cn
作者简介: 宋鑫(1994—),男,硕士生,从事混凝土耐久性研究. orcid.org/0000-0002-6106-1590. E-mail: 21712181@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
宋鑫
樊玮洁
毛江鸿
金伟良

引用本文:

宋鑫,樊玮洁,毛江鸿,金伟良. 基于多级电迁的混凝土内氯离子动态控制效果[J]. 浙江大学学报(工学版), 2021, 55(3): 511-518.

Xin SONG,Wei-jie FAN,Jiang-hong MAO,Wei-liang JIN. Dynamic control effect of chloride in concrete based on multi-level electromigration. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 511-518.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.03.011        http://www.zjujournals.com/eng/CN/Y2021/V55/I3/511

图 1  多级电迁氯离子控制方法原理及结构示意图
试验目的 试件编号 电迁类型 内置电极/层 通电时间/d
均匀性迁移效果 MI-0 单极电迁 0 18
MI-2 两极电迁 2 18
质量分数控制效果 MC-0 单极电迁 0 18
MC-2 两极电迁 2 18
MC-3 三极电迁 3 27
表 1  试件分组设计
图 2  离子均匀性迁移效果试验布置
图 3  氯离子质量分数控制效果试验布置图
图 4  试件取粉位置
图 5  离子均匀性迁移效果试验显色结果
图 6  氯离子迁出效果
图 7  残余氯离子质量分数分布图
图 8  各深度氯离子质量分数标准差对比
图 9  两级电迁试件电势分布图
图 10  某码头寿命预测曲线与长寿命控制策略
策略 阳极 阴极 控制区域
I 外部阳极 内置电极2 A
II 内置电极2 内置电极1 B
III 内置电极1 钢筋 C
表 2  不同修复策略下的多级电迁电场布置
1 金伟良, 赵羽习. 混凝土结构耐久性[M]. 北京: 科学出版社, 2014.
2 TANG S W, YAO Y, ANDRADE C, et al Recent durability studies on concrete structure[J]. Cement and Concrete Research, 2015, 78 (SIA): 143- 154
3 卢振永, 金伟良, 王海龙 人工气候模拟加速试验的相似性设计[J]. 浙江大学学报: 工学版, 2009, 43 (6): 1071- 1076
LU Zhen-yong, JIN Wei-liang, WANG Hai-long Similarity design of artificial climate simulation accelerated test[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (6): 1071- 1076
4 VAKILI H, RAMEZANZADEH B, AMINI R The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings[J]. Corrosion Science, 2015, 94: 466- 475
doi: 10.1016/j.corsci.2015.02.028
5 杨苹, 李伟华, 赵铁军 不同表面涂层对混凝土的防护效果[J]. 硅酸盐学报, 2012, 40 (11): 1613- 1617
YANG Ping, LI Wei-hua, ZHAO Tie-jun Protective effect of different surface coatings on concrete[J]. Journal of silicate, 2012, 40 (11): 1613- 1617
6 金伟良, 陈佳芸, 毛江鸿, 等 电化学修复对钢筋混凝土结构服役性能的作用效应[J]. 工程力学, 2016, 33 (2): 1- 10
JIN Wei-liang, CHEN Jia-yun, MAO Jiang-hong, et al Effect of electrochemical repair on service performance of reinforced concrete structures[J]. Engineering Mechanics, 2016, 33 (2): 1- 10
doi: 10.6052/j.issn.1000-4750.2015.06.ST06
7 ELSENER B, MOLINA M, BOHNI H The electrochemical removal of chlorides from reinforced-concrete[J]. Corrosion Science, 1993, 35 (5-8): 1563- 1565
doi: 10.1016/0010-938X(93)90385-T
8 蒋正武, 杨凯飞 碳化混凝土电化学再碱化效果研究[J]. 建筑材料学报, 2012, 15 (1): 17- 21
JIANG Zheng-wu, YANG Kai-fei Study on electrochemical realkalization effect of carbonated concrete[J]. Journal of Building Materials, 2012, 15 (1): 17- 21
doi: 10.3969/j.issn.1007-9629.2012.01.004
9 金伟良, 彭文浩, 毛江鸿 不同电流密度下混凝土裂缝电沉积产物的分布特性[J]. 土木与环境工程学报, 2019, 41 (3): 127- 133
JIN Wei-liang, Peng Wen-hao, Mao Jiang-hong Distribution characteristics of electrodeposited products of concrete cracks under different current densities[J]. Journal of civil and Environmental Engineering, 2019, 41 (3): 127- 133
10 许晨, 金伟良, 章思颖 氯盐侵蚀混凝土结构延寿技术初探Ⅱ——混凝土中6种胺类有机物电迁移与阻锈性能[J]. 建筑材料学报, 2014, 17 (4): 572- 578
XU Chen, JIN Wei-liang, ZHANG Si-ying Preliminary study on service life extension of concrete structures under chloride environment—effectiveness of six amine-based inhibitors for steel in chloride-contaminated simulated concrete pore solutions[J]. Journal of Building Materials, 2014, 17 (4): 572- 578
doi: 10.3969/j.issn.1007-9629.2014.04.003
11 WU H, ISFAHANI F T, JIN W, et al Modification of properties of reinforced concrete through nanoalumina electrokinetic treatment[J]. Construction and Building Materials, 2016, 126: 857- 867
doi: 10.1016/j.conbuildmat.2016.09.098
12 许晨, 金伟良, 黄楠, 等 双向电渗对钢筋混凝土的修复效果实验?保护层表面强度变化规律[J]. 浙江大学学报: 工学版, 2015, 49 (6): 1128- 1138
XU Chen, JIN Wei-liang, HUANG Nan, et al Experimental study on the effect of bidirectional electromigration rehabilitation of reinforced concrete[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (6): 1128- 1138
13 BUENFELD N R, BROOMFIELD J P Influence of electrochemical chloride extraction on the bond between steel and concrete[J]. Magazine of Concrete Research, 2000, 52 (2): 79- 91
doi: 10.1680/macr.2000.52.2.79
14 SIEGWART M Influence of electrochemical chloride extraction on the performance of prestressed concrete under dynamic loading conditions[J]. Journal of Materials in Civil Engineering, 2006, 18 (6): 800- 812
doi: 10.1061/(ASCE)0899-1561(2006)18:6(800)
15 MAO J, JIN W, ZHANG J, et al Hydrogen embrittlement risk control of prestressed tendons during electrochemical rehabilitation based on bidirectional electro-migration[J]. Construction and Building Materials, 2019, 213: 582- 591
doi: 10.1016/j.conbuildmat.2019.04.008
16 ZHANG J, JIN W, MAO J, et al Deterioration of static mechanical properties of RC beams due to bond damage induced by electrochemical rehabilitation[J]. Construction and Building Materials, 2020, 237: 117629
doi: 10.1016/j.conbuildmat.2019.117629
17 ARYA C, SA'ID-SHAWQI Q Factors influencing electrochemical removal of chloride from concrete[J]. Cement and Concrete Research, 1996, 26 (6): 851- 860
doi: 10.1016/0008-8846(96)00067-1
18 ZHU J H, WEI L, MOAHMOUD H, et al Investigation on CFRP as dual-functional material in chloride-contaminated solutions[J]. Construction and Building Materials, 2017, 151: 127- 137
doi: 10.1016/j.conbuildmat.2017.05.213
19 刘军. 基于碘离子传输特征的混凝土渗透性评价方法研究[D]. 长沙: 中南大学, 2013.
LIU Jun. Study on the evaluation method of concrete permeability based on the characteristics of iodine ion transport [D]. Changsha: Central South University, 2013.
20 郭柱. 三乙烯四胺阻锈剂双向电渗效果研究[D]. 杭州: 浙江大学, 2013.
GUO Zhu. A study of triethylenetetramine corrosion inhibitor for bilateral electro-osmotic method [D]. Hangzhou: Zhejiang University, 2013.
21 元斐斌, 金伟良, 毛江鸿, 等 基于双向电迁移的开裂混凝土除氯阻锈效果[J]. 浙江大学学报: 工学版, 2019, 53 (12): 2317- 2324
YUAN Fei-bin, JIN Wei-liang, MAO Jiang-hong, et al Experimental study on the effect of chloride removal and corrosion prevention for cracked concrete based on bi-directional electro-migration rehabilitation[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (12): 2317- 2324
22 XIA J, LI L Numerical simulation of ionic transport in cement paste under the action of externally applied electric field[J]. Construction and Building Materials, 2013, 39: 51- 59
doi: 10.1016/j.conbuildmat.2012.05.036
23 吴锋, 汪冬冬, 时蓓玲, 等 后张法预应力混凝土大直径管桩耐久性与寿命预测研究[J]. 土木工程学报, 2016, 49 (3): 122- 128
WU Feng, WANG Dong-dong, SHI Bei-ling, et al Research on durability and life prediction for raymond cylinder pile[J]. Journal of Civil Engineering, 2016, 49 (3): 122- 128
[1] 赵亚贤,马晔城,程子强,曹欣,刘涌,韩高荣. 基于纳米压痕技术的电子玻璃微观力学性能研究[J]. 浙江大学学报(工学版), 2021, 55(5): 984-990.
[2] 金南国,何家豪,付传清,金贤玉. 钢筋加速非均匀锈蚀试验方法和锈蚀形态研究[J]. 浙江大学学报(工学版), 2020, 54(3): 483-490.
[3] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[4] 元斐斌,金伟良,毛江鸿,王金权,樊玮洁,夏晋. 基于双向电迁移的开裂混凝土除氯阻锈效果[J]. 浙江大学学报(工学版), 2019, 53(12): 2317-2324.
[5] 宋迎宾, 徐金霞, 蒋林华, 谭启平, 梅友静. NO3-/NO2-插层MgAl-LDHs在混凝土模拟孔溶液中的阻锈性能[J]. 浙江大学学报(工学版), 2018, 52(12): 2397-2405.
[6] 周永刚,李培,敖翔,赵虹. 基于燃烧均匀性的对冲燃烧锅炉高温腐蚀抑制[J]. 浙江大学学报(工学版), 2015, 49(9): 1768-1775.
[7] 金伟良,黄楠,许晨,毛江鸿. 双向电渗对钢筋混凝土修复效果的试验研究——保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报(工学版), 2014, 48(9): 1586-1594.
[8] 高玖藜, 柳景青, 张土乔, 李聪, 蒋伟. 水中氯离子和腐植酸对管网铁释放的影响[J]. J4, 2013, 47(8): 1321-1328.
[9] 项贻强, 程坤, 郭冬梅, 李威, 林士旭. 基于热力耦合的钢筋混凝土锈胀开裂分析[J]. J4, 2012, 46(8): 1444-1449.
[10] 鲁彩凤, 袁迎曙, 季海霞, 姬永生. 海洋大气中氯离子在粉煤灰混凝土中的传输规律[J]. J4, 2012, 46(4): 681-690.
[11] 田浩,陈艾荣,陈亮. 寿命期内混凝土桥梁性能演变分析[J]. J4, 2012, 46(1): 52-57.
[12] 薛文, 金伟良, 横田弘. 养护条件与暴露环境对氯离子传输的耦合作用[J]. J4, 2011, 45(8): 1416-1422.
[13] 金伟良,许晨. 钢筋脱钝氯离子阈值快速测定新方法[J]. J4, 2011, 45(3): 520-525.
[14] 延永东, 金伟良, 王海龙. 饱和状态下开裂混凝土内的氯离子输运[J]. J4, 2011, 45(12): 2127-2133.
[15] 薛鹏飞, 项贻强. 修正的氯离子在混凝土中的扩散模型及其工程应用[J]. J4, 2010, 44(4): 831-.