Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (3): 483-490    DOI: 10.3785/j.issn.1008-973X.2020.03.008
土木工程     
钢筋加速非均匀锈蚀试验方法和锈蚀形态研究
金南国1(),何家豪1,付传清2,*(),金贤玉1
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 浙江工业大学 建筑工程学院,浙江 杭州 310014
Study on experimental method and morphology of accelerated non-uniform corrosion of steel bars
Nan-guo JIN1(),Jia-hao HE1,Chuan-qing FU2,*(),Xian-yu JIN1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China
 全文: PDF(1812 KB)   HTML
摘要:

采用自主发明的通电加速钢筋非均匀锈蚀试验方法,以不锈钢丝作为辅助电极对混凝土试件进行通电加速锈蚀,利用三维激光扫描技术获得不同锈蚀率下锈蚀钢筋的三维几何模型,研究采用该方法时锈蚀钢筋的不均匀性. 研究发现,由此可以得到与实际自然锈蚀情况相似的不均匀锈蚀现象,即靠近不锈钢丝一侧锈蚀比较严重,远离不锈钢丝一侧锈蚀较少. 根据对锈蚀钢筋纵向截面积的分析,建立不均匀系数R的概率分布模型,其值满足Gumbel极值分布;将模型与实际自然锈蚀的钢筋不均匀系数R的概率分布进行比较,进一步验证该方法用于评估钢筋混凝土构件承载力的可行性.

关键词: 通电锈蚀不均匀性三维激光扫描概率分布    
Abstract:

An innovative test method of non-uniform corrosion was developed to investigate the non-uniformity of steel bar corrosion in concrete. The corrosion of steel bar in concrete was accelerated by the electrification between a pre-embedded stainless steel wire and the steel bar in concrete specimen. The 3D geometric model of steel bar corrosion at different corrosion rates was obtained using the 3D laser scanning technology. Results indicate that the non-uniform corrosion behavior of steel bar obtained by this method was similar to that from the condition of natural corrosion. That is, the corrosion in concrete near the stainless steel wire is much severer than that far away from the stainless steel wire. The probability distribution model of the non-uniform coefficient R, which was established from the longitudinal cross section area of corroded steel bar, agreed well with the Gumbel extreme value distribution. Compared with the probability distribution of the non-uniform coefficient R under natural corrosion, the feasibility of this method in evaluation of the bearing capacity for reinforced concrete members is further verified.

Key words: electrochemical corrosion    non-uniformity    3D laser scanning    probability distribution
收稿日期: 2019-02-24 出版日期: 2020-03-05
CLC:  TU 375  
基金资助: 国家“973”重点基础研究发展规划资助项目(2015CB655103);国家自然科学基金资助项目(51978620,51678529,51578497)
通讯作者: 付传清     E-mail: jinng@zju.edu.cn;chqfu@zju.edu.cn
作者简介: 金南国(1959—),男,教授,博士. 从事混凝土结构耐久性研究. orcid.org/0000-0003-4780-624X. E-mail: jinng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
金南国
何家豪
付传清
金贤玉

引用本文:

金南国,何家豪,付传清,金贤玉. 钢筋加速非均匀锈蚀试验方法和锈蚀形态研究[J]. 浙江大学学报(工学版), 2020, 54(3): 483-490.

Nan-guo JIN,Jia-hao HE,Chuan-qing FU,Xian-yu JIN. Study on experimental method and morphology of accelerated non-uniform corrosion of steel bars. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 483-490.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.008        http://www.zjujournals.com/eng/CN/Y2020/V54/I3/483

图 1  不锈钢丝到钢筋表面各点之间的距离
图 2  钢筋非均匀锈蚀形态
水灰比 水泥 细骨料 粗骨料
0.53 370 750 1 112 188
表 1  混凝土配合比
图 3  钢筋混凝土试件示意图
试件编号 i/( ${\rm{\mu A}} \cdot {\rm{c}}{{\rm{m}}^{{\rm{ - 3}}}}$ ρ0/ % t/h
A12-1 300 5 74.6
A12-2 10 373
A12-3 15 1 119
表 2  混凝土试件通电时间计划表
图 4  通电加速锈蚀装置
图 5  锈蚀钢筋与三维重构模型
图 6  钢筋切分示意图
图 7  不同锈蚀率下混凝土试件锈胀裂缝分布图
图 8  钢筋非均匀锈蚀锈层局部放大图
图 9  不同锈蚀率的锈蚀钢筋与三维重构模型图
试件编号 ρ0 ρ ρav w
A12-1 5 4 4.0 0
A12-2 10 8 7.7 3.7
A12-3 15 11 10.7 2.7
表 3  钢筋通电锈蚀理论锈蚀率、质量锈蚀率与三维扫描计算平均锈蚀率对比
图 10  锈蚀钢筋残余面积与截面锈蚀率分布图     
图 11  部分通电非均匀锈蚀钢筋轮廓曲线图     
图 12  通电均匀锈蚀与非均匀锈蚀钢筋轮廓对比图
图 13  不同质量锈蚀率下锈蚀钢筋R值频率分布以及分布验证
图 14  Gumbel极值分布的位置参数μ、尺度参数σ与质量锈蚀率ρ之间的关系
图 15  不同质量锈蚀率下的R值概率密度分布图
图 16  自然锈蚀与通电非均匀锈蚀的R值概率密度分布图
1 王雪松, 金贤玉, 田野, 等 开裂混凝土中钢筋加速锈蚀方法适用性[J]. 浙江大学学报: 工学版, 2013, 47 (4): 565- 574+5
WANG Xue-song, JIN Xian-yu, TIAN Ye, et al Applicability of accelerated corrosion method of steel bars in cracked concrete structure[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (4): 565- 574+5
2 干伟忠, 金伟良, 高明赞 混凝土中钢筋加速锈蚀试验适用性研究[J]. 建筑结构学报, 2011, 32 (2): 41- 47
GAN Wei-zhong, JIN Wei-liang, GAO Ming-zan Applicability study on accelerated corrosion methods of steel bars in concrete structure[J]. Journal of Building Structures, 2011, 32 (2): 41- 47
3 张伟平, 顾祥林, 金贤玉, 等 混凝土中钢筋锈蚀机理及锈蚀钢筋力学性能研究[J]. 建筑结构学报, 2010, (Suppl. 1): 327- 332
ZHANG Wei-ping, GU Xiang-lin, JIN Xian-yu, et al Study on corrosion mechanism of steel bars in concrete and mechanical performance of corroded steel bars[J]. Journal of Building Structures, 2010, (Suppl. 1): 327- 332
4 姬永生, 张博雅, 张领雷, 等 钢筋锈蚀层发展和锈蚀量分布模型比较研究[J]. 中国矿业大学学报, 2012, 41 (3): 355- 360
JI Yong-sheng, ZHANG Bo-ya, ZHANG Ling-lei, et al Propagation of the corrosion layer and model of corrosion distribution steel re-enforcing bar in concrete[J]. Journal of China University of Mining and Technology, 2012, 41 (3): 355- 360
5 徐港, 张瑞, 彭艳周, 等 保护层胀裂前钢筋通电锈蚀特性影响因素研究[J]. 华中科技大学学报:自然科学版, 2017, 45 (3): 127- 137
XU Gang, ZHANG Rui, PENG Yan-zhou, et al Study on influence factor of corroded characteristics of reinforcing bars under galvanostatic accelerated corrosion before concrete cover cracking[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45 (3): 127- 137
6 ZHU W, RAOUL F, ZHANG C, et al Propagation of corrosion-induced cracks of the RC beam exposed to Marine environment under sustained load for a period of 26 years[J]. Cement and Concrete Research, 2018, 103: 66- 76
doi: 10.1016/j.cemconres.2017.09.014
7 WANG X, ZHANG W, GU X, et al Determination of residual cross-sectional areas of corroded bars in reinforced concrete structures using easy-to-measure variables[J]. Construction and Building Materials, 2013, 38: 846- 853
doi: 10.1016/j.conbuildmat.2012.09.060
8 YU L, FRAN?OIS R, DANG V, et al Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions[J]. Cement and Concrete Research, 2015, 67: 246- 258
doi: 10.1016/j.cemconres.2014.10.007
9 付传清, 何家豪, 金贤玉, 等 带横向荷载裂缝钢筋混凝土梁的钢筋锈蚀形态研究[J]. 建筑结构学报, 2019, 40 (1): 123- 131
FU Chuan-qing, HE jia-hao, JIN Xian-yu, et al Corrosion pattern of rebar in RC beam with loading transverse cracks[J]. Journal of Building Structures, 2019, 40 (1): 123- 131
10 TORRES A, MARTINEZ M Residual Life of corroding reinforced concrete structures in Marine environment[J]. Journal of Materials in Civil Engineering, 2003, 15 (4): 344- 353
doi: 10.1061/(ASCE)0899-1561(2003)15:4(344)
11 CAIRNS J, PLIZZARI G, DU Y, et al Mechanical properties of corrosion-damaged reinforcement[J]. ACI Materials Journal, 2005, 102 (4): 256- 264
12 STEWART M G Mechanical behavior of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams[J]. Structural Safety, 2009, 31 (1): 19- 30
doi: 10.1016/j.strusafe.2007.12.001
13 CASTEL A, VIDAL T, FRAN?OIS R, et al Influence of steel-concrete interface quality on reinforcement corrosion induced by chlorides[J]. Magazine of Concrete Research, 2003, 55 (2): 151- 159
doi: 10.1680/macr.2003.55.2.151
14 VIDAL T, CASTEL A, FRAN?OIS R Analyzing crack width to predict corrosion in reinforced concrete[J]. Cement and Concrete Research, 2004, 34 (1): 165- 174
doi: 10.1016/S0008-8846(03)00246-1
15 ZHANG R, CASTEL A, FRAN?OIS R Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process[J]. Cement and Concrete Research, 2010, 40 (3): 415- 425
doi: 10.1016/j.cemconres.2009.09.026
16 KHAN I, FRAN?OIS R, CASTEL A Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams[J]. Cement and Concrete Research, 2014, 56: 84- 96
doi: 10.1016/j.cemconres.2013.11.006
17 ZHANG W, ZHOU B, GU X, et al Probability distribution model for cross-sectional area of corroded reinforcing steel bars[J]. Journal of Materials in Civil Engineering, 2014, 26 (5): 822- 832
doi: 10.1061/(ASCE)MT.1943-5533.0000888
18 WANG X, SONG X, ZHANG M, et al Experimental comparison of corrosion unevenness and expansive cracking between accelerated corrosion methods used in laboratory research[J]. Construction and Building Materials, 2017, 153: 36- 43
doi: 10.1016/j.conbuildmat.2017.07.084
19 GU X, GUO H, ZHOU B, et al Corrosion non-uniformity of steel bars and reliability of corroded RC beams[J]. Engineering Structures, 2018, 26: 188- 202
20 付传清, 梁坚凝, 金贤玉, 等. 模拟混凝土中钢筋自然非均匀锈蚀的试验方法及试验装置[P]. 中国专利: CN105738273A, 2016-07-06.
21 FU C, JIN N, YE H, et al Non-uniform corrosion of steel in mortar induced by impressed current method: An experimental and numerical investigation[J]. Construction and Building Materials, 2018, 183: 429- 438
doi: 10.1016/j.conbuildmat.2018.06.183
22 王晓刚, 杜相波, 闫军印, 等 混凝土构件中钢筋锈蚀的电加速技术对比试验研究[J]. 建筑结构学报, 2015, 36 (1): 104- 110
WANG Xiao-gang, DU Xiang-bo, YAN Jun-yin, et al Experimental comparison of galvanostatic methods for accelerated corrosion of steel bars in RC members[J]. Journal of Building Structures, 2015, 36 (1): 104- 110
[1] 赵俭斌,席义博,王振宇. 海上风机单桩基础疲劳损伤计算方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1711-1719.
[2] 黄铭枫, 李强, 涂志斌, 楼文娟. 基于Copula函数的杭州地区多风向极值风速估计[J]. 浙江大学学报(工学版), 2018, 52(5): 828-835.
[3] 王挺 蒋新. 温度对吸附相反应技术制备纳米TiO2的影响[J]. J4, 2006, 40(5): 845-847.