Please wait a minute...
J4  2013, Vol. 47 Issue (3): 508-514    DOI: 10.3785/j.issn.1008-973X.2013.03.016
土木工程     
基于嵌入空间变形体法的流固耦合网格更新
卢旦,李承铭
上海现代建筑设计(集团)有限公司,上海 200041
Mesh update method for fluid-solid coupling computation
based on embedding spatial deformation method
LU Dan, LI Cheng-ming
Shanghai Xian Dai Architectural Design (Group) Co., Ltd,Shanghai 200041, China
 全文: PDF  HTML
摘要:

为解决在传统基于松耦合技术的流固耦合计算中由于单元类型和数量的不同,网格变形不协调、计算收敛困难以及计算误差大等问题,在进行流固耦合网格更新计算中引入了计算机图形学中基于自由变形(FFD)原理的嵌入空间变形体方法,通过将少量结构节点作为控制点来完成大量流体网格的高阶连续变形功能.计算中考虑了湍流来流边界条件的影响,与采用分区插值方法的计算结果进行了比较,并对流固耦合中的气动阻尼特性进行了分析.验证算例表明:该方法实现了高层建筑的任意复杂连续侧弯及扭转变形,且不受建筑外形复杂程度的影响|计算收敛性和精度更高,数值计算结果与风洞试验的结果吻合更好.

Abstract:

A mesh update scheme on the basis of computer graphics principle of free-form deformation (FFD) was introduced for loosely fluid-solid coupling to address issues such as the difference of element type and amount, the mesh deformation without coordination, the convergence difficulties and the calculation errors. The higher order and continuous deformation of fluid mesh was implemented by embedding spatial deformation method based on FFD. The deformation of fluid meshes was controlled by structure grids which usually have fewer number than the outer mold surface defined by the fluid mesh. The effect of turbulent flow boundary conditions was taken into account. Comparison was carried out with FFD method and the partitioned interpolation method. The aerodynamic damping characteristics were also analyzed. It is found that FFD method implements the high-rise building's arbitrarily complex continuous lateral bending and torsion, and the problem of the complicated architectural shape can also be solved with good convergence and high precision. The numerical results acquired by the study well accorded with those of wind tunnel test.

出版日期: 2013-03-01
:  TU 312  
基金资助:

上海市科技人才计划资助项目(10QB1403500).

作者简介: 卢旦(1978-),男,高级工程师,博士,从事计算风工程方面研究.E-mail: dan_lu@xd-ad.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

卢旦,李承铭. 基于嵌入空间变形体法的流固耦合网格更新[J]. J4, 2013, 47(3): 508-514.

LU Dan, LI Cheng-ming. Mesh update method for fluid-solid coupling computation
based on embedding spatial deformation method. J4, 2013, 47(3): 508-514.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2013.03.016        http://www.zjujournals.com/eng/CN/Y2013/V47/I3/508

[1] GLUCK M, BREUER M, DURST F, et al. Computation of Fluid-structure interaction on lightweight structures [J]. Wind Engineering Industry Aerodynamics, 2011, 89(14/15):1351-1368.
[2] HUBNER B, WALHORN E, DINKLER D. Simultaneous solution to the interaction of wind flow and light weight membrane structures [C]∥ Proceedings of the International Conference on Lightweight Structures in Civil Engineering. Warsaw:[s.n.], 2002:5192523.
[3]BATINA J T. Unsteady euler airfoil solution using unstructured dynamic meshes [J]. American Institute of Aeronautics and Astronautics, 1990,28(8):13811388.
[4] FARHAT C, DEGAND C, KOOBUS B. Torsional springs for two-dimensional dynamic unstructured fluid meshes [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1-4):231-245.
[5] 刘占生, 张云峰. 拉伸弹簧与扭转弹簧模拟动态网格方法分析与改进[J]. 哈尔滨工业大学学报,2005, 37(8):1098-1102.
LIU Zhan-shen, ZHANG Yun-feng. Analysis and enhancement on linear spring and torsional spring based dynamic mesh method [J]. Journal of Harbin Institute of Technology, 2005, 37(8):1098-1102.
[6] BAUM J, LUO H, LOHNER R. A new ALE adaptive unstructured methodology for the simulation of moving bodies [J]. American Institute of Aeronautics and Astronautics, 1994, 32(3):414-422.
[7] 刘建军. 基于嵌入空间变形的物体变形方法研究[J].计算机与信息技术,2008(3):38-40.
LIU Jian-jun. Research on deformation method based on embedding spatial deformation [J]. Computer and Information Technology , 2008(3):38-40.
[8] 邢景棠, 周盛, 崔尔杰. 流固耦合力学概述[J].力学进展, 1997(1):19-38.
XING Jing-tang, ZHOU Sheng, CUI Er-jie. A survey on the fluid solid interaction mechanics [J]. Advances in Mechanics ,1997(1):19-38.
[9] 王少波, 刘元杰, 梁醒培,等, 弹性板在黏性流体中的耦合振动分析[J]. 机械工程学报, 2004(7):63-66.
WANG Shao-bo, LIU Yuan-jie, LIANG Xin-pei, et al. Analysis of elastic plate in a viscous fluid coupling vibration [J]. Chinese Journal of Mechanical Engineering, 2004(7): 63-66.
[10] 全涌. 超高层建筑气动弹性模型风洞试验研究[D].上海:同济大学, 1999.
QUAN Yong. Study on aeroelastic model wind tunnel test of highrise building [D]. Shanghai: Tongji University, 1999.
[11] 彪仿俊. 建筑物表面风荷载的数值模拟研究[D]. 杭州:浙江大学,2005.
BIAO Fang-jun. Study on newmerical simulation of wind-load on structures [D]. Hangzhou: Zhejiang University, 2005.
[12] AL-JAMAL H, DALTON C. Vortex induced vibrations using Large Eddy Simulation at a moderate Reynolds number [J]. Journal of Fluids and Structures, 2004,19:73-92.
[13] BOURIS D, BERGELES G. 2D LES of vortex shedding from a square cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80:31-46.
[14] KONDO K, TSUCHIYA M, MOCHIDA A, et al. Generation of inflow turbulent boundary layer for LES computation [J]. Wind and Structures, 2002,5(6):209-226.
[15] GU M, QUAN Y. Across-wind loads of typical tall buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92:1147-1165.
[16] 方平治. 典型建筑结构气动弹性问题的数值模拟研究[D].上海:同济大学, 2007.
FANG Ping-Zhi. Simulation of the aeroelastic problems for typical structures [D].Shanghai: Tongji University, 2007.

[1] 沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.
[2] 李勰, 陈水福. 门式刚架轻钢结构抗风安全性分析[J]. J4, 2013, 47(12): 2141-2145.
[3] 汪小娣,沈金,楼文娟. 高层建筑边角凹凸对体型系数分布的影响[J]. J4, 2012, 46(1): 20-26.