Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (1): 127-137    DOI: 10.3785/j.issn.1008-973X.2026.01.012
机械工程     
联邦协作框架下的跨工况半监督剩余使用寿命预测
李琦媛1(),程鑫1,马文清1,张开淦1,夏唐斌1,2,*(),奚立峰1,2
1. 上海交通大学 机械与动力工程学院 工业工程与管理系,上海 200240
2. 特殊环境数字制造装备技术创新中心,四川 绵阳 621900
Federated collaborative framework-based semi-supervised remaining useful life prediction under cross-operating conditions
Qiyuan LI1(),Xin CHENG1,Wenqing MA1,Kaigan ZHANG1,Tangbin XIA1,2,*(),Lifeng XI1,2
1. Department of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Special Environment Digital Manufacturing Equipment Technology Innovation Center, Mianyang 621900, China
 全文: PDF(1854 KB)   HTML
摘要:

针对不同工况下信号数据分布的差异性与隐私保护限制,设计半监督域对抗联邦协作模型(SAFCM),实现数据跨工况和隐私保护下机械设备的剩余寿命预测. 设计双向注意力时序卷积网络,从通道注意力和自注意力机制2个方向进行域不变特征提取;以该卷积网络作为特征提取器,构建跨工况半监督域对抗模型(COCSAM),通过域对抗学习和域距离度量在不平衡域之间实现高鲁棒性的域适应;将COCSAM集成到联邦协作框架中,搭建SAFCM,通过子模型的差异化分布和动态加权更新,实现数据隐私保护下的网络异步更新,促进数据的充分利用和高效域适应. 采用2个不同应用场景下的数据集进行解释性分析和鲁棒性研究,结果证明所提模型在真实工业场景中具有稳健性和优越性.

关键词: 剩余使用寿命半监督域适应跨工况联邦学习    
Abstract:

In response to the distribution differences under different operating conditions and the privacy protection constraints of signal data, a semi-supervised domain adversarial federated collaborative model (SAFCM) was designed to realize the remaining useful life prediction of mechanical equipment under cross-operating conditions and privacy preservation. A bidirectional attention temporal convolutional network was designed to extract domain-invariant features through two directions of channel attention mechanism and self-attention mechanism. By using this convolutional network as a feature extractor, a cross-operating-condition semi-supervised domain adversarial model (COCSAM) was constructed to achieve highly robust domain adaptation between imbalanced domains through domain adversarial learning and domain distance measurement. The COCSAM was integrated into the federated collaborative framework to build the SAFCM. Through differentiated distribution and dynamic weighted updates of the sub-models, asynchronous network updates were achieved under data privacy protection, promoting the full utilization of data and efficient domain adaptation. Two datasets from different application scenarios were utilized to conduct the interpretability analysis and robustness study, the results of which demonstrated the robustness and superiority of the proposed SAFCM in real industrial scenarios.

Key words: remaining useful life    semi-supervision    domain adaptation    cross-operating condition    federated learning
收稿日期: 2025-02-28 出版日期: 2025-12-15
:  TH 17  
基金资助: 国家重点研发计划资助项目(2022YFF0605700);上海市自然科学基金资助项目(25ZR1401196).
通讯作者: 夏唐斌     E-mail: communicate@sjtu.edu.cn;xtbxtb@sjtu.edu.cn
作者简介: 李琦媛(2001—),女,硕士生,从事智能预测与健康管理研究. orcid.org/0009-0000-8641-6012. E-mail:communicate@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李琦媛
程鑫
马文清
张开淦
夏唐斌
奚立峰

引用本文:

李琦媛,程鑫,马文清,张开淦,夏唐斌,奚立峰. 联邦协作框架下的跨工况半监督剩余使用寿命预测[J]. 浙江大学学报(工学版), 2026, 60(1): 127-137.

Qiyuan LI,Xin CHENG,Wenqing MA,Kaigan ZHANG,Tangbin XIA,Lifeng XI. Federated collaborative framework-based semi-supervised remaining useful life prediction under cross-operating conditions. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 127-137.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.012        https://www.zjujournals.com/eng/CN/Y2026/V60/I1/127

图 1  半监督域对抗联邦协作模型模型整体框架图
图 2  COCSAM中域适应多目标平衡优化框架
图 3  SAFCM联邦通讯流程图
子模型$ {k_{{\mathrm{size}}}} $$ {p_{{\mathrm{drop}}}} $$ {h_{{\mathrm{hid}}}} $
特征提取器方向一(5, 2)(0.2, 0)
特征提取器方向二(3, 7)
域判别器(0.2, 0.2, 0.2)(64, 32, 2)
回归预测器(0.2, 0.2, 0, 0)(64, 32, 16, 1)
表 1  SAFCM网络结构超参数
图 4  不同域特征在域适应前后的概率密度分布
图 5  基于不同传感器特征对域适应结果的解释性分析
图 6  双向注意力时序卷积网络及其不同方向的变体的预测性能比较
参数数值参数数值
$\eta $0.15${e_{\mathrm{l}}}$10
$\delta $1${e_{\mathrm{c}}}$10
$\gamma $0.8${b_{\rm{T}}}$125
$\lambda $0.8${n_{\mathrm{c}}}$5
$r$0.8$\alpha $0.01
${e_{\mathrm{M}}}$40$h$(30, 20, 30, 15)
表 2  SAFCM网络的域适应训练超参数
图 7  跨工况条件下不同预测模式的RUL预测结果
图 8  FD003-FD001任务中域适应RUL预测结果
图 9  跨工况条件下采用不同发动机时的预测结果对比
图 10  不同超参数取值下域适应结果的鲁棒性对比
方法RMSE1/cyclesRMSE2/cyclesScore1Score2
FD002FD003FD004FD001FD003FD004FD002FD003FD004FD001FD003FD004
DANN[24]31.2124.0727.2322.7122.4124.1812 415.324 005.819 016.182 289.483 700.225 349.81
CORAL[25]39.9742.0138.3535.4736.4037.2637 600.0746 826.0928 640.649 321.0513 314.3419 782.51
CADA[26]33.4317.9029.3717.4220.5524.8919 996.121 694.2811 581.88822.353 008.265 511.68
MCDA[27]42.1939.3734.5737.9636.4437.9640 147.2625 641.775 382.3811 059.267 686.8917 670.28
SAFCM20.3917.8921.8117.7321.2722.474 386.661 445.384 506.43863.152 626.984 372.02
方法RMSE3/cyclesRMSE4/cyclesScore3Score4
FD001FD002FD004FD001FD002FD003FD001FD002FD004FD001FD002FD003
DANN[24]22.2628.8625.4819.5122.8522.125 082.157 540.779 888.571 000.346 214.723 324.13
CORAL[25]35.6340.1038.5835.7338.3535.149 446.8135 069.4529 449.8010 294.3636 487.919 525.98
CADA[26]20.2528.6930.3225.5123.4220.341 341.1011 864.9612 018.762 780.707 204.243 323.91
MCDA[27]35.1840.8740.0239.3340.1637.085 334.8142 708.9045 589.3517 057.2452 331.2011 804.43
SAFCM18.0621.7022.6420.1021.4319.541 086.965 133.467 608.821 350.913 622.501 745.91
表 3  SAFCM与其他先进方法的域适应预测性能比较
子数据集机床类型${N_1}$${N_2}$$ l_1^{\max }/{\mathrm{h}} $$ l_1^{\min } /{\mathrm{h}}$$ l_2^{\max } /{\mathrm{h}}$$ l_2^{\min }/{\mathrm{h}} $
${M_1}$数控铣削中心1001003 6332 4643 6912 356
${M_2}$数控车床1001004 1551 5524 4691 715
${M_3}$数控铣床1001002 1031 0391 9391 007
${M_4}$数控打孔机1001002 279692 29026
${M_5}$数控随动磨床1001002 4111 5532 4331 587
${M_6}$数控抛光机1001004 9784085 543554
表 4  制造系统场景中传感器信号的总体设置
方法RMSE1/cyclesRMSE2/cyclesRMSE3/cycles${{\mathrm{RMSE}}_{\mathrm{a}}}$/cycles
${M_2}$${M_4}$${M_6}$${M_4}$${M_5}$${M_6}$${M_1}$${M_6}$
DANN[24]24.9423.9111.4946.475.9526.0220.3628.9231.79
CORAL[25]28.6125.2516.0651.4513.6615.6716.3827.1727.95
CADA[26]27.4521.4917.8845.685.4214.8720.3425.6530.39
MCDA[27]24.6324.9917.7043.8910.8112.9522.3227.4729.79
SAFCM14.4720.879.6627.995.177.8016.0821.3526.45
方法RMSE4/cyclesRMSE5/cyclesRMSE6/cycles${d_{\min }}$
${M_1}$${M_2}$${M_6}$${M_4}$${M_6}$${M_1}$${M_5}$
DANN[24]32.9466.8825.7848.9132.7418.1517.30223.83
CORAL[25]26.0369.5327.8244.0131.1016.3211.37140.67
CADA[26]25.8368.5028.3141.9229.8417.9214.11214.08
MCDA[27]25.6868.1027.1442.7724.7617.6113.51179.29
SAFCM20.3066.3125.2938.5419.4616.2610.6686.49
表 5  数控机床数据集的RUL预测结果
1 FERREIRA C, GONÇALVES G Remaining useful life prediction and challenges: a literature review on the use of machine learning methods[J]. Journal of Manufacturing Systems, 2022, 63: 550- 562
doi: 10.1016/j.jmsy.2022.05.010
2 许昱晖, 舒俊清, 宋亚, 等 基于多时间尺度相似性的涡扇发动机寿命预测[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1937- 1947
XU Yuhui, SHU Junqing, SONG Ya, et al Remaining useful life prediction of turbofan engine based on similarity in multiple time scales[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1937- 1947
3 SANZ-GORRACHATEGUI I, PASTOR-FLORES P, PAJOVIC M, et al Remaining useful life estimation for LFP cells in second-life applications[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1- 10
4 JIANG Y, ZHAO M, ZHAO W, et al Prediction of sea temperature using temporal convolutional network and LSTM-GRU network[J]. Complex Engineering Systems, 2021, 1: 6
5 GUO B, QIAO Z, DONG H, et al Temporal convolutional approach with residual multi-head attention mechanism for remaining useful life of manufacturing tools[J]. Engineering Applications of Artificial Intelligence, 2024, 128: 107538
doi: 10.1016/j.engappai.2023.107538
6 ZHANG Z, SONG W, LI Q Dual-aspect self-attention based on Transformer for remaining useful life prediction[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2505711
7 LIAO X, CHEN S, WEN P, et al Remaining useful life with self-attention assisted physics-informed neural network[J]. Advanced Engineering Informatics, 2023, 58: 102195
doi: 10.1016/j.aei.2023.102195
8 ZHAO K, JIA Z, JIA F, et al Multi-scale integrated deep self-attention network for predicting remaining useful life of aero-engine[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105860
doi: 10.1016/j.engappai.2023.105860
9 ZHU Y, ZI Y, XU J, et al An unsupervised dual-regression domain adversarial adaption network for tool wear prediction in multi-working conditions[J]. Measurement, 2022, 200: 111644
doi: 10.1016/j.measurement.2022.111644
10 MIAO M, YU J, ZHAO Z A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions[J]. Reliability Engineering & System Safety, 2022, 219: 108259
11 王昊, 肖慧灵, 王丽亚, 等 一种基于改进迁移策略与膨胀卷积神经网络的轴承故障诊断方法[J]. 工业工程与管理, 2022, 27 (1): 94- 101
WANG Hao, XIAO Huiling, WANG Liya, et al Bearing fault diagnosis based on improved transfer strategy and dilated convolutional neural network[J]. Industrial Engineering and Management, 2022, 27 (1): 94- 101
12 WU K, LI J, ZUO L, et al Weighted adversarial domain adaptation for machine remaining useful life prediction[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3526511
13 蔡伟立, 胡小锋, 刘梦湘 基于迁移学习的刀具剩余寿命预测方法[J]. 计算机集成制造系统, 2021, 27 (6): 1541- 1549
CAI Weili, HU Xiaofeng, LIU Mengxiang Prediction method of tool remaining useful life based on transfer learning[J]. Computer Integrated Manufacturing Systems, 2021, 27 (6): 1541- 1549
14 MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale: PMLR, 2017: 1273–1282.
15 ZHOU F, ZHANG Z, LI S Research on federated learning method for fault diagnosis in multiple working conditions[J]. Complex Engineering Systems, 2021, 1: 7
16 ZHANG Z, MING Y, WANG Y A federated transfer learning approach for surface electromyographic hand gesture recognition with emphasis on privacy preservation[J]. Engineering Applications of Artificial Intelligence, 2024, 136: 108952
doi: 10.1016/j.engappai.2024.108952
17 刘翀赫, 余官定, 刘胜利 基于无线D2D网络的分层联邦学习[J]. 浙江大学学报: 工学版, 2023, 57 (5): 892- 899
LIU Chonghe, YU Guanding, LIU Shengli Hierarchical federated learning based on wireless D2D networks[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (5): 892- 899
18 WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531–11539.
19 VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc, 2017: 6000–6010.
20 SILVA F M, ALMEIDA L B. Acceleration techniques for the backpropagation algorithm [C]// European Association for Signal Processing Workshop. Barcelona: EURASIP, 1990: 110–119.
21 SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation [C]// Proceedings of the International Conference on Prognostics and Health Management. Denver: IEEE, 2008: 1–9.
22 LI X, DING Q, SUN J Q Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1- 11
23 韩冬阳, 林泽宇, 郑宇, 等 基于选择性深度神经网络集成的涡扇发动机剩余寿命预测[J]. 浙江大学学报: 工学版, 2022, 56 (11): 2109- 2118
HAN Dongyang, LIN Zeyu, ZHENG Yu, et al Remaining useful life estimation of turbofan engine based on selective ensemble of deep neural networks[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 2109- 2118
24 DE OLIVEIRA DA COSTA P R, AKÇAY A, ZHANG Y, et al Remaining useful lifetime prediction via deep domain adaptation[J]. Reliability Engineering & System Safety, 2020, 195: 106682
25 SUN B, FENG J, SAENKO K. Correlation alignment for unsupervised domain adaptation [M]// CSURKA G. Domain adaptation in computer vision applications. Cham: Springer, 2017: 153–171.
26 RAGAB M, CHEN Z, WU M, et al Contrastive adversarial domain adaptation for machine remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (8): 5239- 5249
doi: 10.1109/TII.2020.3032690
[1] 章东平,王大为,何数技,汤斯亮,刘志勇,刘中秋. 基于跨维度特征融合的航空发动机寿命预测[J]. 浙江大学学报(工学版), 2025, 59(7): 1504-1513.
[2] 王立红,刘新倩,李静,冯志全. 基于联邦学习和时空特征融合的网络入侵检测方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1201-1210.
[3] 杨凯博,钟铭恩,谭佳威,邓智颖,周梦丽,肖子佶. 基于半监督学习的多场景火灾小规模稀薄烟雾检测[J]. 浙江大学学报(工学版), 2025, 59(3): 546-556.
[4] 卢朕,李建业,董云泉. 基于模型聚合的去中心化拜占庭鲁棒算法[J]. 浙江大学学报(工学版), 2024, 58(3): 492-500.
[5] 周雕,熊馨,周建华,宗静,张琪. 卷积神经网络结合子域适应的低采样率肌电手势识别[J]. 浙江大学学报(工学版), 2024, 58(10): 2011-2019.
[6] 刘翀赫,余官定,刘胜利. 基于无线D2D网络的分层联邦学习[J]. 浙江大学学报(工学版), 2023, 57(5): 892-899.
[7] 刘半藤,叶赞挺,秦海龙,王柯,郑启航,王章权. 基于距离度量损失框架的半监督学习方法[J]. 浙江大学学报(工学版), 2023, 57(4): 744-752.
[8] 刘坤,杨晓松. 基于无监督域适应的跨场景带钢表面缺陷识别[J]. 浙江大学学报(工学版), 2023, 57(3): 477-485.
[9] 莫仁鹏,司小胜,李天梅,朱旭. 基于多尺度特征与注意力机制的轴承寿命预测[J]. 浙江大学学报(工学版), 2022, 56(7): 1447-1456.
[10] 黄发明,潘李含,姚池,周创兵,姜清辉,常志璐. 基于半监督机器学习的滑坡易发性预测建模[J]. 浙江大学学报(工学版), 2021, 55(9): 1705-1713.
[11] 刘清清,周志勇,范国华,钱旭升,胡冀苏,陈光强,戴亚康. 基于3D scSE-UNet的肝脏CT图像半监督学习分割方法[J]. 浙江大学学报(工学版), 2021, 55(11): 2033-2044.
[12] 许昱晖,舒俊清,宋亚,郑宇,夏唐斌. 基于多时间尺度相似性的涡扇发动机寿命预测[J]. 浙江大学学报(工学版), 2021, 55(10): 1937-1947.
[13] 胡云青,邱清盈,余秀,武建伟. 基于改进三体训练法的半监督专利文本分类方法[J]. 浙江大学学报(工学版), 2020, 54(2): 331-339.
[14] 刘如辉, 黄炜平, 王凯, 刘创, 梁军. 半监督约束集成的快速密度峰值聚类算法[J]. 浙江大学学报(工学版), 2018, 52(11): 2191-2200.
[15] 黄正宇, 蒋鑫龙, 刘军发, 陈益强, 谷洋. 基于融合特征的半监督流形约束定位方法[J]. 浙江大学学报(工学版), 2017, 51(4): 655-662.