| 机械工程 |
|
|
|
|
| 联邦协作框架下的跨工况半监督剩余使用寿命预测 |
李琦媛1( ),程鑫1,马文清1,张开淦1,夏唐斌1,2,*( ),奚立峰1,2 |
1. 上海交通大学 机械与动力工程学院 工业工程与管理系,上海 200240 2. 特殊环境数字制造装备技术创新中心,四川 绵阳 621900 |
|
| Federated collaborative framework-based semi-supervised remaining useful life prediction under cross-operating conditions |
Qiyuan LI1( ),Xin CHENG1,Wenqing MA1,Kaigan ZHANG1,Tangbin XIA1,2,*( ),Lifeng XI1,2 |
1. Department of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. Special Environment Digital Manufacturing Equipment Technology Innovation Center, Mianyang 621900, China |
引用本文:
李琦媛,程鑫,马文清,张开淦,夏唐斌,奚立峰. 联邦协作框架下的跨工况半监督剩余使用寿命预测[J]. 浙江大学学报(工学版), 2026, 60(1): 127-137.
Qiyuan LI,Xin CHENG,Wenqing MA,Kaigan ZHANG,Tangbin XIA,Lifeng XI. Federated collaborative framework-based semi-supervised remaining useful life prediction under cross-operating conditions. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 127-137.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.012
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I1/127
|
| 1 |
FERREIRA C, GONÇALVES G Remaining useful life prediction and challenges: a literature review on the use of machine learning methods[J]. Journal of Manufacturing Systems, 2022, 63: 550- 562
doi: 10.1016/j.jmsy.2022.05.010
|
| 2 |
许昱晖, 舒俊清, 宋亚, 等 基于多时间尺度相似性的涡扇发动机寿命预测[J]. 浙江大学学报: 工学版, 2021, 55 (10): 1937- 1947 XU Yuhui, SHU Junqing, SONG Ya, et al Remaining useful life prediction of turbofan engine based on similarity in multiple time scales[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (10): 1937- 1947
|
| 3 |
SANZ-GORRACHATEGUI I, PASTOR-FLORES P, PAJOVIC M, et al Remaining useful life estimation for LFP cells in second-life applications[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1- 10
|
| 4 |
JIANG Y, ZHAO M, ZHAO W, et al Prediction of sea temperature using temporal convolutional network and LSTM-GRU network[J]. Complex Engineering Systems, 2021, 1: 6
|
| 5 |
GUO B, QIAO Z, DONG H, et al Temporal convolutional approach with residual multi-head attention mechanism for remaining useful life of manufacturing tools[J]. Engineering Applications of Artificial Intelligence, 2024, 128: 107538
doi: 10.1016/j.engappai.2023.107538
|
| 6 |
ZHANG Z, SONG W, LI Q Dual-aspect self-attention based on Transformer for remaining useful life prediction[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2505711
|
| 7 |
LIAO X, CHEN S, WEN P, et al Remaining useful life with self-attention assisted physics-informed neural network[J]. Advanced Engineering Informatics, 2023, 58: 102195
doi: 10.1016/j.aei.2023.102195
|
| 8 |
ZHAO K, JIA Z, JIA F, et al Multi-scale integrated deep self-attention network for predicting remaining useful life of aero-engine[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105860
doi: 10.1016/j.engappai.2023.105860
|
| 9 |
ZHU Y, ZI Y, XU J, et al An unsupervised dual-regression domain adversarial adaption network for tool wear prediction in multi-working conditions[J]. Measurement, 2022, 200: 111644
doi: 10.1016/j.measurement.2022.111644
|
| 10 |
MIAO M, YU J, ZHAO Z A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions[J]. Reliability Engineering & System Safety, 2022, 219: 108259
|
| 11 |
王昊, 肖慧灵, 王丽亚, 等 一种基于改进迁移策略与膨胀卷积神经网络的轴承故障诊断方法[J]. 工业工程与管理, 2022, 27 (1): 94- 101 WANG Hao, XIAO Huiling, WANG Liya, et al Bearing fault diagnosis based on improved transfer strategy and dilated convolutional neural network[J]. Industrial Engineering and Management, 2022, 27 (1): 94- 101
|
| 12 |
WU K, LI J, ZUO L, et al Weighted adversarial domain adaptation for machine remaining useful life prediction[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3526511
|
| 13 |
蔡伟立, 胡小锋, 刘梦湘 基于迁移学习的刀具剩余寿命预测方法[J]. 计算机集成制造系统, 2021, 27 (6): 1541- 1549 CAI Weili, HU Xiaofeng, LIU Mengxiang Prediction method of tool remaining useful life based on transfer learning[J]. Computer Integrated Manufacturing Systems, 2021, 27 (6): 1541- 1549
|
| 14 |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale: PMLR, 2017: 1273–1282.
|
| 15 |
ZHOU F, ZHANG Z, LI S Research on federated learning method for fault diagnosis in multiple working conditions[J]. Complex Engineering Systems, 2021, 1: 7
|
| 16 |
ZHANG Z, MING Y, WANG Y A federated transfer learning approach for surface electromyographic hand gesture recognition with emphasis on privacy preservation[J]. Engineering Applications of Artificial Intelligence, 2024, 136: 108952
doi: 10.1016/j.engappai.2024.108952
|
| 17 |
刘翀赫, 余官定, 刘胜利 基于无线D2D网络的分层联邦学习[J]. 浙江大学学报: 工学版, 2023, 57 (5): 892- 899 LIU Chonghe, YU Guanding, LIU Shengli Hierarchical federated learning based on wireless D2D networks[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (5): 892- 899
|
| 18 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531–11539.
|
| 19 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc, 2017: 6000–6010.
|
| 20 |
SILVA F M, ALMEIDA L B. Acceleration techniques for the backpropagation algorithm [C]// European Association for Signal Processing Workshop. Barcelona: EURASIP, 1990: 110–119.
|
| 21 |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation [C]// Proceedings of the International Conference on Prognostics and Health Management. Denver: IEEE, 2008: 1–9.
|
| 22 |
LI X, DING Q, SUN J Q Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1- 11
|
| 23 |
韩冬阳, 林泽宇, 郑宇, 等 基于选择性深度神经网络集成的涡扇发动机剩余寿命预测[J]. 浙江大学学报: 工学版, 2022, 56 (11): 2109- 2118 HAN Dongyang, LIN Zeyu, ZHENG Yu, et al Remaining useful life estimation of turbofan engine based on selective ensemble of deep neural networks[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (11): 2109- 2118
|
| 24 |
DE OLIVEIRA DA COSTA P R, AKÇAY A, ZHANG Y, et al Remaining useful lifetime prediction via deep domain adaptation[J]. Reliability Engineering & System Safety, 2020, 195: 106682
|
| 25 |
SUN B, FENG J, SAENKO K. Correlation alignment for unsupervised domain adaptation [M]// CSURKA G. Domain adaptation in computer vision applications. Cham: Springer, 2017: 153–171.
|
| 26 |
RAGAB M, CHEN Z, WU M, et al Contrastive adversarial domain adaptation for machine remaining useful life prediction[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (8): 5239- 5249
doi: 10.1109/TII.2020.3032690
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|