计算机技术、信息工程 |
|
|
|
|
基于改进三体训练法的半监督专利文本分类方法 |
胡云青( ),邱清盈*( ),余秀,武建伟 |
浙江大学 机械工程学院,浙江 杭州 310027 |
|
Semi-supervised patent text classification method based on improved Tri-training algorithm |
Yun-qing HU( ),Qing-ying QIU*( ),Xiu YU,Jian-wei WU |
College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
胡云青,邱清盈,余秀,武建伟. 基于改进三体训练法的半监督专利文本分类方法[J]. 浙江大学学报(工学版), 2020, 54(2): 331-339.
Yun-qing HU,Qing-ying QIU,Xiu YU,Jian-wei WU. Semi-supervised patent text classification method based on improved Tri-training algorithm. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 331-339.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.014
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I2/331
|
1 |
TAKERU M, SHIN-ICHI M, SHIN I, et al Virtual adversarial training: a regularization method for supervisedand semi-supervised learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 2883039
|
2 |
YANG H F, LIN K, CHEN C S Supervised learning of semantics-preserving hash via deep convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (2): 437- 451
doi: 10.1109/TPAMI.2017.2666812
|
3 |
周志华 基于分歧的半监督学习[J]. 自动化学报, 2013, 39 (11): 1871- 1878 ZHOU Zhi-hua Disagreement-based semi-supervised learning[J]. Actaautomatica Sinica, 2013, 39 (11): 1871- 1878
doi: 10.3724/SP.J.1004.2013.01871
|
4 |
CHAPELLE O, SCH?LKOPFB, ZIEN A. Semi-supervised learning [J]. IEEE Transactions on Neural Networks, 2009, 20(3): 542.
|
5 |
TURIAN J, RATINOV L, BENGIO Y. Word representations: a simple and general method for semi-supervised learning [C]// Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics. Uppsala: ACL, 2010: 384-394.
|
6 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [C]// ICLR 2017. [s.l.]: ICLR, 2017: 1-14.
|
7 |
DAI A M, LE Q V. Semi-supervised sequencelearning [C]// Neural Information Processing Systems. Montreal: NIPS, 2015: 1−9.
|
8 |
SHAHSHAHANI B M, LANDGREBE D A The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32 (5): 1087- 1095
doi: 10.1109/36.312897
|
9 |
MILLER D, UYAR H. A mixture of experts classifier with learning based on both labeled and unlabeled data [C]// Advances in Neural Information Processing Systems 9. Denver: NIPS, 1997: 571-577.
|
10 |
NIGAM K, MCCALLUM A K, THRUN, S Text classification from labeled and unlabeled documents using EM[J]. Machine Learning, 2000, 39 (2/3): 103- 134
doi: 10.1023/A:1007692713085
|
11 |
JOACHIMS T. Transductive inference for text classification using support vector machines [C]// Proceedings of the 16th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 1999: 200-209.
|
12 |
ZHU X J, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using gaussian fields and harmonic functions [C]// Proceedings of the 20th International Conference on Machine Learning. Washington DC: ICML, 2003: 912-919.
|
13 |
ZHOU Z H, LI M Semi-supervised learning by disagrement[J]. Knowledge and Information Systems, 2010, 24 (3): 415- 439
doi: 10.1007/s10115-009-0209-z
|
14 |
BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training [C]// Proceedings of the 11th Annual Conference on Computational Learning Theory. Madison: ACM, 1998: 92-100.
|
15 |
张倩, 刘怀亮 一种基于半监督学习的短文本分类方法[J]. 现代图书情报技术, 2013, 29 (2): 30- 35 ZHANG Qian, LIU Huai-liang An algorithm of short text classification based on semi-supervised learning[J]. New Technology of Library and Information Service, 2013, 29 (2): 30- 35
|
16 |
LI S S, HUANG C R, ZHOU G D, et al. Employing personal/impersonal views in supervised and 30 semi-supervised sentiment classification [C]// Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Uppsala: ACL, 2010: 414-423.
|
17 |
GOLDAN S A, ZHOU Y. Enhancing supervised learning with unlabeled data [C]// Proceedings of the 17th International Conference on Machine Learning. San Francisco: IMLS: 327-334.
|
18 |
ZHOU Z H, LI M. Tri-Training: exploiting unlabeled data using three classifiers [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541.
|
19 |
SAITO K, USHIKU Y, HARADA T. A symmetric tri-training for unsupervised domain adaptation [C]// Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR, 2017: 2988-2997.
|
20 |
TELLEZ E S, MOCTEZUMA D, MIRANDA-JIMéNEZ S, et al An automated text categorization framework based on hyperparameter optimization[J]. Knowledge-Based Systems, 2018, 149: 110- 123
doi: 10.1016/j.knosys.2018.03.003
|
21 |
XU Y, CHEN L. Term-frequency based feature selection methods for text categorization [C]// Proceedings of the 2010 4th International Conference on Genetic and Evolutionary Computing. Shenzhen: ICGEC, 2010: 280-283.
|
22 |
SHANG C, MIN L, FENG S, et al Feature selection via maximizing global information gain for text classification[J]. Knowledge-Based Systems, 2013, 54 (4): 298- 309
|
23 |
YIN C Y, XI J W Maximum entropy model for mobile text classificationin cloud computing using improved information gain algorithm[J]. Multimedia Tools and Applications, 2017, 76 (16): 16875- 16891
doi: 10.1007/s11042-016-3545-5
|
24 |
石慧, 贾代平, 苗培 基于词频信息的改进信息增益文本特征选择算法[J]. 计算机应用, 2014, 34 (11): 3279- 3282 SHI Hui, JIA Dai-ping, MIAO Pei Improved information gain text feature selection algorithm based on word frequency information[J]. Journal of Computer Applications, 2014, 34 (11): 3279- 3282
|
25 |
KO Y. A study of term weighting schemes using class information for text classification [C]// Proceedings of the 35th International ACM SIGIR Conferenceon Research and Development in Information Retrieval. Portland: ACM, 2012: 1029-1030.
|
26 |
SUN S L Local within-class accuracies for weighting individual outputs in multiple classifier systems[J]. Pattern Recognition Letters, 2010, 31 (2): 119- 124
doi: 10.1016/j.patrec.2009.09.017
|
27 |
WANG S, MINGKU L L, YAO X. Resampling-based ensemble methods for online class imbalance learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5): 1356-1368.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|