Please wait a minute...
浙江大学学报(工学版)
人机交互与普适计算     
基于融合特征的半监督流形约束定位方法
黄正宇, 蒋鑫龙, 刘军发, 陈益强, 谷洋
1. 湘潭大学 信息工程学院,湖南 湘潭 411105; 
2. 中国科学院 计算技术研究所,北京 100190;
3. 北京市移动计算与新型终端重点实验室,北京 100190; 
4. 中国科学院大学,北京 100190
Fusion feature based semi-supervised manifold localization method
HUANG Zheng-yu, JIANG Xin-long, LIU Jun-fa, CHEN Yi-qiang, GU Yang
1. College of Information Engineering, Xiangtan University, Xiangtan 411105, China;
2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
3. Beijing Key Laboratory of Mobile Computing and Pervasive Device, Beijing 100190, China;
4. University of Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(1286 KB)   HTML
摘要:

针对Wi-Fi和低功耗蓝牙单模定位方法在精度、稳定性和普适性上难以满足需求以及现有定位方法须采集大量标定数据这些问题,设计实现了将Wi-Fi和低功耗蓝牙信号进行融合的半监督定位方法,有效利用了Wi-Fi和低功耗蓝牙信号的定位优势,采用半监督流形约束来引入非标定数据进行模型训练.实验表明,与单一特征相比,提出的融合特征在提升了鲁棒性的同时,定位精度提高了20%以上;采用引入的半监督流形约束定位方法,能够使标定训练数据减少90%.

Abstract:

Wi-Fi and Bluetooth Low Energy based single mode localization methods cannot get satisfactory performance on localization accuracy, robustness and universality. In the training phase, a large amount of calibrated data is required to train a model. A semi-supervised localization method was proposed based on fusing features of Wi-Fi and Bluetooth low energy signals in order to solve these problems. Wi-Fi and Bluetooth Low Energy based localization methods were effectively used, and semi-supervised manifold was employed to import a vast amount of uncalibrated data for model training. Experimental results show that the proposed fusion feature can increase the indoor localization accuracy by more than 20% as well as improving robustness compared with single feature. The semisupervised manifold localization method can dramatically reduce labeled calibration samples by 90%.

出版日期: 2017-04-25
CLC:  TP 391  
基金资助:

国家自然科学基金资助项目(61572004, 61472399, 61572471, 61502456);中国科学院科研装备研制项目(YZ201527);教育部-中国移动科研基金资助项目(MCM20150401);国家重点研发计划资助项目(2016YFB1001401);广东省科技计划资助项目(2015B010105001).

通讯作者: 陈益强,男,研究员,博导. ORCID: 0000-0002-8407-0780.     E-mail: yqchen@ict.ac.cn
作者简介: 黄正宇(1991—),男,硕士生,从事室内定位、信息检索研究. ORCID: 0000-0003-0341-4009. E-mail: huangzhengyu@ict.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

黄正宇, 蒋鑫龙, 刘军发, 陈益强, 谷洋. 基于融合特征的半监督流形约束定位方法[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.003.

HUANG Zheng-yu, JIANG Xin-long, LIU Jun-fa, CHEN Yi-qiang, GU Yang. Fusion feature based semi-supervised manifold localization method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.003.

[1] HONKAVIRTA V, PERL T, ALILYTTY S, et al. A comparative survey of WLAN location fingerprinting methods [C]∥ 6th Workshop on Positioning, Navigation and Communication. Hannover: IEEE, 2009:243-251.
[2] NEWMAN N. Apple ibeacon technology briefing [J]. Journal of Direct, Data and Digital Marketing Practice, 2014, 15(3): 222-225.
[3] CHEN Z Y. Mining individual behavior pattern based on significant locations and spatial trajectories[C]∥ 2012 IEEE International Conference on Pervasive Computing and Communications Workshops. Lugano: IEEE, 2012: 540-541.
[4] CHEN Z Y, WANG S Q, CHEN Y Q, et al. InferLoc: calibration free based location inference for temporal and spatial finegranularity magnitude [C]∥ 2012 IEEE 15th International Conference on Computational Science and Engineering. Lugano: IEEE, 2012: 453-460.
[5] CHEN Z Y, CHEN Y Q, WANG S Q, et al. A supervised learning based semantic location extraction method using mobile phone data [C]∥2012 IEEE International Conference on Computer Science and Automation Engineering. Zhangjiajie: IEEE, 2012: 548-551.
[6] CHEN Z Y, ZHOU J Y, CHEN Y Q, et al. Combing multiple linear regression and manifold regularization for indoor positioning from unique radio signal [C]∥ 2009 Joint Conferences on Pervasive Computing. Taibei: IEEE, 2009: 611-614.
[7] CHEN Z Y, CHEN Y Q, GAO X Y, et al. Unobtrusive sensing incremental social contexts using fuzzy class incremental learning [C]∥ 2015 IEEE International Conference on Data Mining. Atlantic City: IEEE, 2015: 71-80.
[8] CHEN Z Y, CHEN Y Q, HU L S, et al. ContextSense: unobtrusive discovery of incremental social context using dynamic bluetooth data [C]∥Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Seattle: ACM, 2014:23-26.
[9] CHEN Z Y, CHEN Y Q, WANG S Q, et al. Inferring social contextual behavior from bluetooth traces [C]∥Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication. Zurich: ACM, 2013: 267-270.
[10] TORTEEKA P, CHUNDI X I U. Indoor positioning based on Wi-Fi fingerprint technique using fuzzy knearest neighbor [C]∥ 2014 11th International Bhurban Conference on IEEE Applied Sciences and Technology. Islamabad: IEEE, 2014: 461-465.
[11] MA R, GUO Q, HU C, et al. An improved WiFi indoor positioning algorithm by weighted fusion [J]. Sensors, 2015, 15(9): 21824-21843.
[12] ZHU J Y, LUO H Y, CHEN Z L, et al. RSSI based Bluetooth low energy indoor positioning [C]∥ 2014 International Conference on IEEE Indoor Positioning and Indoor Navigation. Busan: IEEE, 2014: 526-533.
[13] FARAGHER R, HARLE R. Location fingerprinting with bluetooth low energy BLEs [J]. IEEE Journal on Selected Area in Communications, 2015, 33(11):2418-2428.
[14] GAO X Y, CHEN Z Y, TANG S, et al. Adaptive weighted imbalance learning with application to abnormal activity recognition [J]. Neurocomputing, 2016, 173: 1927-1935.
[15] GAO X Y, HOI S C H, ZHANG Y D, et al. SOML: sparse online metric learning with application to image retrieval [C]∥AAAI. Quebec City: [s. n.], 2014: 1206-1212.
[16] ZHAO Z T, CHEN Z Y, CHEN Y Q, et al. A class incremental extreme learning machine for activity recognition [J]. Cognitive Computation, 2014, 6(3):423-431.
[17] CHEN Y, CHEN R, PEI L, et al. Knowledge-based error detection and correction method of a multi-sensor multi-network positioning platform for pedestrian indoor navigation [C]∥ 2010 IEEE/ION Position Location and Navigation Symposium. Indian Wells: IEEE, 2010: 873-879.
[18] RADU V, LI J, KRIARA L, et al. Poster: a hybrid approach for indoor mobile phone localization [C]∥ International Conference on Mobile Systems, Applications, and Services. Low Wood Bay: ACM, 2012:527-528.
[19] ZHUANG Y, WANG K, WANG W, et al. A hybrid sensing approach to mobile robot localization in complex indoor environments [J]. International Journal of Robotics and Automation, 2012, 27(2): 198-205.
[20] COLOMBO A, FONTANELLI D, MACII D, et al. Flexible indoor localization and tracking based on a wearable platform and sensor data fusion [J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(4): 864-876.
[21] AYLLON D, SANCHEZHEVIA H, GIL-PITA R, et al. Indoor blind localization of smartphones by means of sensor data fusion [C]∥ Sensors Applications Symposium. Zadar: IEEE, 2015.
[22] 王睿,赵方,彭金华,等.基于WI-FI和蓝牙融合的室内定位算法[J].计算机研究与发展,2011(增2): 2833.WANG Rui, ZHAO Fang, PENG Jin-hua, et al. Combination of WI-FI and bluetooth for indoor localization [J]. Journal of Computer Research and Development, 2011 (supple.2): 28-33.
[23] WANG D L, BROWN G J. Computational auditory scene-analysis: principles, algorithms, and applications [M]. Piscataway: WileyIEEE, 2006.
[24] ORFANIDIS S J. Optimum signal processing: an introduction [M]. London: Macmillan, 1988.
[25] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks [C]∥ Proceedings of 2004 IEEE International Joint Conference on Neural Networks. Budapest: IEEE, 2004: 985-990.
[26] RAO C R, MITRA S K. Generalized inverse of matrices and its applications [M]. New York: Wiley, 1971.
[27] SERRE D. Matrices: theory and applications [J]. Mathematics, 2002(32): 218-221.
[28] LIU J, CHEN Y, LIU M, et al. SELM: semi-supervised ELM with application in sparse calibrated location estimation [J]. Neurocomputing, 2011, 74(16):2566-2572.
[29] CHUNG F R K. Spectral graph theory [M]. Washington: American Mathematical Society, 1997, 9(6): 55.
[30] BELKIN M, MATVEEVA I, NIYOGI P. Regularization and semi-supervised learning on large graphs[C]∥International Conference on Computational Learning Theory. Berlin: Springer, 2004: 624-638.
[31] BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples [J]. Journal of Machine Learning Research, 2006, 7(1): 2399-2434.
[1] 郑守国,张勇德,谢文添,樊虎,王青. 基于数字孪生的飞机总装生产线建模[J]. 浙江大学学报(工学版), 2021, 55(5): 843-854.
[2] 张师林,马思明,顾子谦. 基于大边距度量学习的车辆再识别方法[J]. 浙江大学学报(工学版), 2021, 55(5): 948-956.
[3] 宋鹏,杨德东,李畅,郭畅. 整体特征通道识别的自适应孪生网络跟踪算法[J]. 浙江大学学报(工学版), 2021, 55(5): 966-975.
[4] 蔡君,赵罡,于勇,鲍强伟,戴晟. 基于点云和设计模型的仿真模型快速重构方法[J]. 浙江大学学报(工学版), 2021, 55(5): 905-916.
[5] 王虹力,郭斌,刘思聪,刘佳琪,仵允港,於志文. 边端融合的终端情境自适应深度感知模型[J]. 浙江大学学报(工学版), 2021, 55(4): 626-638.
[6] 张腾,蒋鑫龙,陈益强,陈前,米涛免,陈彪. 基于腕部姿态的帕金森病用药后开-关期检测[J]. 浙江大学学报(工学版), 2021, 55(4): 639-647.
[7] 郑英杰,吴松荣,韦若禹,涂振威,廖进,刘东. 基于目标图像FCM算法的地铁定位点匹配及误报排除方法[J]. 浙江大学学报(工学版), 2021, 55(3): 586-593.
[8] 雍子叶,郭继昌,李重仪. 融入注意力机制的弱监督水下图像增强算法[J]. 浙江大学学报(工学版), 2021, 55(3): 555-562.
[9] 于勇,薛静远,戴晟,鲍强伟,赵罡. 机加零件质量预测与工艺参数优化方法[J]. 浙江大学学报(工学版), 2021, 55(3): 441-447.
[10] 胡惠雅,盖绍彦,达飞鹏. 基于生成对抗网络的偏转人脸转正[J]. 浙江大学学报(工学版), 2021, 55(1): 116-123.
[11] 陈杨波,伊国栋,张树有. 基于点云特征对比的曲面翘曲变形检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 81-88.
[12] 段有康,陈小刚,桂剑,马斌,李顺芬,宋志棠. 基于相位划分的下肢连续运动预测[J]. 浙江大学学报(工学版), 2021, 55(1): 89-95.
[13] 张太恒,梅标,乔磊,杨浩杰,朱伟东. 纹理边界引导的复合材料圆孔检测方法[J]. 浙江大学学报(工学版), 2020, 54(12): 2294-2300.
[14] 梁栋,刘昕宇,潘家兴,孙涵,周文俊,金子俊一. 动态背景下基于自更新像素共现的前景分割[J]. 浙江大学学报(工学版), 2020, 54(12): 2405-2413.
[15] 晋耀,张为. 采用Anchor-Free网络结构的实时火灾检测算法[J]. 浙江大学学报(工学版), 2020, 54(12): 2430-2436.