Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (9): 1964-1974    DOI: 10.3785/j.issn.1008-973X.2025.09.020
机械工程     
空中作业机器人系统显式时间自适应跟踪控制
刘宜成(),马翔,严文
四川大学 电气工程学院,四川 成都 610065
Explicit-time adaptive tracking control for aerial manipulator systems
Yicheng LIU(),Xiang MA,Wen YAN
College of Electrical Engineering, Sichuan University, Chengdu 610065, China
 全文: PDF(2568 KB)   HTML
摘要:

空中作业机器人系统的复杂物理结构使其在运行过程中易受复杂环境扰动影响,难以实现在较小控制输入下的固定时间稳定控制. 提出一种新型的显式时间自适应控制(ETAC)方法,在未知扰动存在时,使系统误差在显式时间内快速收敛. 利用牛顿-欧拉法建立空中作业机器人的动力学模型,设计自适应神经网络逼近策略,无须依赖先验知识即可估计扰动;结合显式时间稳定策略以确保控制收敛性,加快系统收敛速度,并有效缓解控制输入过大导致的控制器饱和问题. 数值仿真和飞行实验结果表明,与预定义时间控制方法相比,所提方法的控制输入减少了30.51%,系统误差收敛时间缩短了8.36%;在机械臂受到扰动的情况下,系统误差降低了31.25%. 该方法在保持较小控制输入的同时,显著增强了系统的抗扰动能力.

关键词: 空中作业机器人轨迹跟踪显式时间稳定策略扰动估计自适应神经网络    
Abstract:

A novel explicit-time adaptive control (ETAC) method was proposed to address the challenge of achieving fixed-time stable control with minimal control input in aerial manipulator systems which are susceptible to environmental disturbances during operation due to the complex physical structure. This method enabled rapid system error convergence within an explicit time frame even in the presence of unknown disturbances. The Newton-Euler method was utilized to establish the dynamic model of the aerial manipulator, and an adaptive neural network approximation strategy was designed to estimate disturbances without relying on prior knowledge. An explicit-time stability strategy was incorporated to ensure control convergence, accelerating system convergence while mitigating the problem of controller saturation caused by excessive control input. The results of numerical simulation and flight experiments indicated that, compared to the predefined-time control method, the proposed method reduced the control input by 30.51%, shortened the system error convergence time by 8.36%, and decreased the system error by 31.25% under manipulator disturbances. This method significantly enhances the system’s disturbance rejection capability while maintaining a lower control input.

Key words: aerial manipulator    trajectory tracking    explicit time stabilization strategy    disturbance estimation    adaptive neural networks
收稿日期: 2024-10-31 出版日期: 2025-08-25
CLC:  TP 242  
基金资助: 四川省智能制造与机器人重大科技专项资助项目 (2019ZDZX0019).
作者简介: 刘宜成(1975—),男,副教授,博士,从事机器人建模和控制研究. orcid.org/0000-0003-3571-3839. E-mail:liuyicheng@scu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘宜成
马翔
严文

引用本文:

刘宜成,马翔,严文. 空中作业机器人系统显式时间自适应跟踪控制[J]. 浙江大学学报(工学版), 2025, 59(9): 1964-1974.

Yicheng LIU,Xiang MA,Wen YAN. Explicit-time adaptive tracking control for aerial manipulator systems. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1964-1974.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.020        https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1964

图 1  空中作业机器人系统结构示意图
图 2  空中作业机器人控制结构框图
图 3  空中作业机器人实验平台
图 4  电机转速和输入PWM拟合实验结果
图 5  电机拉力系数与转矩系数拟合结果
图 6  自适应神经网络对集总不确定项的估计结果
图 7  扰动补偿对系统控制性能的影响
图 8  姿态跟踪控制的数值仿真结果
图 9  机械臂关节角跟踪结果
图 10  位置跟踪控制对比实验结果
图 11  位置跟踪仿真实验量化结果
图 12  显式时间控制中不同收敛时间的性能对比
图 13  空中作业机器人姿态跟踪实验装置
图 14  不同控制方法的空中作业机器人飞行实验对比结果
姿态角控制方法${T_{\text{c}}}/{\mathrm{s}}$RMSE/(°)${E_{\max }}$/(°)
滚转角FTSMC1.760.659 21.883 8
PTSMC1.580.644 51.956 4
ETAC1.360.479 51.486 8
俯仰角FTSMC2.270.764 81.853 6
PTSMC1.850.523 11.611 8
ETAC1.800.397 21.096 4
偏航角FTSMC1.890.512 91.847 7
PTSMC1.350.384 11.161 8
ETAC1.220.256 10.923 9
表 1  飞行实验中不同控制方法的定量比较
图 15  空中作业机器人抗扰动飞行实验
图 16  空中作业机器人抗扰动对比实验结果
姿态角控制方法$\text { RMSE } /\left({ }^{\circ}\right) $$E_{\text {max }} /\left({ }^{\circ}\right) $
滚转角ADRC0.747 72.768 5
ETAC0.418 41.340 3
俯仰角ADRC0.754 83.875 4
ETAC0.588 03.012 3
偏航角ADRC0.285 91.388 4
ETAC0.222 91.062 1
表 2  不同控制方法抗扰性能定量比较结果
1 KHALID A, MUSHTAQ Z, ARIF S, et al. Control schemes for quadrotor UAV: taxonomy and survey[J]. ACM Computing Surveys, 2023, 56 (5): 1- 32
2 HUA H, FANG Y, ZHANG X, et al A novel robust observer-based nonlinear trajectory tracking control strategy for quadrotors[J]. IEEE Transactions on Control Systems Technology, 2021, 29 (5): 1952- 1963
3 ZEGHLACHE S, RAHALI H, DJERIOUI A, et al Robust adaptive backstepping neural networks fault tolerant control for mobile manipulator UAV with multiple uncertainties[J]. Mathematics and Computers in Simulation, 2024, 218: 556- 585
4 CAO H, WU Y, WANG L Adaptive NN motion control and predictive coordinate planning for aerial manipulators[J]. Aerospace Science and Technology, 2022, 126: 107607
5 YAO Y, DING L, WANG Y Fractional-order nonsingular terminal sliding mode control of a cable-driven aerial manipulator based on RBF neural network[J]. International Journal of Aeronautical and Space Sciences, 2024, 25 (2): 759- 771
6 FANG Q, MAO P, SHEN L, et al Robust control based on adaptive neural network for the process of steady formation of continuous contact force in unmanned aerial manipulator[J]. Sensors, 2023, 23 (2): 989
7 刘宜成, 贺嘉辣, 严文 旋翼飞行机械臂固定时间滑模控制[J]. 电光与控制, 2024, 31 (1): 69- 76
LIU Yicheng, HE Jiala, YAN Wen Fixed-time sliding mode control of rotor flight manipulator[J]. Electronics Optics and Control, 2024, 31 (1): 69- 76
doi: 10.3969/j.issn.1671-637X.2024.01.011
8 刘浩, 黄山, 涂海燕 基于预定义时间的四旋翼滑模控制[J]. 北京航空航天大学学报, 2024, 50 (5): 1665- 1674
LIU Hao, HUANG Shan, TU Haiyan Quadrotor sliding mode control based on predefined time[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (5): 1665- 1674
9 YAN W, ZHAO T, GONG X An explicit-time and explicit-accuracy control for a state-constrained nonstrict-feedback uncertain system based on adaptive fuzzy dynamic-approximation[J]. Journal of the Franklin Institute, 2023, 360 (9): 6425- 6462
10 LI H, LI Z, LIU J, et al Adaptive neural network backstepping control method for aerial manipulator based on coupling disturbance compensation[J]. Journal of the Franklin Institute, 2024, 361 (7): 106733
11 LIANG J, CHEN Y, LAI N, et al Low-complexity prescribed performance control for unmanned aerial manipulator robot system under model uncertainty and unknown disturbances[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (7): 4632- 4641
12 ZHAO K, ZHANG J, MA D, et al Composite disturbance rejection attitude control for quadrotor with unknown disturbance[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (8): 6894- 6903
13 JIANG H, MA Q, GUO J Fuzzy-based fixed-time attitude control of quadrotor unmanned aerial vehicle with full-state constraints: theory and experiments[J]. IEEE Transactions on Fuzzy Systems, 2024, 32 (3): 1108- 1115
14 LIU K, HUNG T, LIN C, et al Redundancy-driven multi-task adaptive backstepping tracking control for aerial manipulators[J]. IEEE Access, 2024, 12: 47134- 47145
15 YOGI S C, TRIPATHI V K, BEHERA L Adaptive integral sliding mode control using fully connected recurrent neural network for position and attitude control of quadrotor[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (12): 5595- 5609
16 LIU Y C, HUANG C Y DDPG-based adaptive robust tracking control for aerial manipulators with decoupling approach[J]. IEEE Transactions on Cybernetics, 2022, 52 (8): 8258- 8271
17 YANG Y, GORBACHEV S, ZHAO B, et al Predictor-based neural attitude control of a quadrotor with disturbances[J]. IEEE Transactions on Industrial Informatics, 2024, 20 (1): 169- 178
18 YAN W, ZHAO T, YANG H, et al 1-order-smooth explicit-time nonsingular terminal sliding mode control of industrial cyber-physical systems against cyber-attacks[J]. IEEE Transactions on Industrial Cyber-Physical Systems, 2023, 1: 371- 380
19 MAHMOOD A, UR REHMAN F, OKASHA M, et al Neural adaptive sliding mode control for camera positioner quadrotor UAV[J]. International Journal of Aeronautical and Space Sciences, 2025, 26 (2): 733- 747
20 ZHU Z, XIA Y, FU M Adaptive sliding mode control for attitude stabilization with actuator saturation[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (10): 4898- 4907
21 LIAN S, MENG W, LIN Z, et al Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (2): 1597- 1607
22 TONG S, LI Y, LIU Y Observer-based adaptive neural networks control for large-scale interconnected systems with nonconstant control gains[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32 (4): 1575- 1585
23 DAI X, KE C, QUAN Q, et al RFlySim: automatic test platform for UAV autopilot systems with FPGA-based hardware-in-the-loop simulations[J]. Aerospace Science and Technology, 2021, 114: 106727
24 YU L, HE G, WANG X, et al A novel fixed-time sliding mode control of quadrotor with experiments and comparisons[J]. IEEE Control Systems Letters, 2021, 6: 770- 775
[1] 魏齐,陶建峰,孙浩,张宇磊,刘成良. 含平衡阀阀控缸的非线性模型预测轨迹跟踪[J]. 浙江大学学报(工学版), 2025, 59(8): 1565-1573.
[2] 刘宜成,杨迦凌,唐瑞,程靖. 柔性空间机器人预定义时间自适应滑模控制[J]. 浙江大学学报(工学版), 2025, 59(2): 351-361.
[3] 叶身村,周兵,柴天,干年妃,贺帅. 不可避撞场景下的车辆碰撞损伤最小化策略[J]. 浙江大学学报(工学版), 2025, 59(2): 362-374.
[4] 洪梦情,丁萌,顾秀涛,郭毓. 双臂空间机器人的固定时间轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1168-1174.
[5] 于瑞,徐雪峰,周华,杨华勇. 基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(3): 436-443.
[6] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[7] 吴海东,司振立. 基于线性矩阵不等式的智能车轨迹跟踪控制[J]. 浙江大学学报(工学版), 2020, 54(1): 110-117.
[8] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[9] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[10] 檀盼龙, 孙青林, 陈增强. 自抗扰技术在动力翼伞轨迹跟踪控制中的应用[J]. 浙江大学学报(工学版), 2017, 51(5): 992-999.
[11] 陶国良, 周超超, 尚策. 气动位置伺服嵌入式控制器及控制策略[J]. 浙江大学学报(工学版), 2017, 51(4): 792-799.
[12] 陈国志, 陈隆道, 蔡忠法. 基于传播算子的间谐波参数智能估计算法[J]. J4, 2011, 45(4): 759-764.
[13] 帅鑫, 李艳君, 吴铁军. 一种柔性机械臂末端轨迹跟踪的预测控制算法[J]. J4, 2010, 44(2): 259-264.
[14] 李强, 王宣银, 程佳. Stewart液压平台轨迹跟踪自适应滑模控制[J]. J4, 2009, 43(6): 1124-1128.
[15] 陈少斌, 蒋静坪. 四轮移动机器人轨迹跟踪的最优状态反馈控制[J]. J4, 2009, 43(12): 2186-2190.