Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (8): 1565-1573    DOI: 10.3785/j.issn.1008-973X.2025.08.002
机械工程、能源工程     
含平衡阀阀控缸的非线性模型预测轨迹跟踪
魏齐(),陶建峰*(),孙浩,张宇磊,刘成良
上海交通大学 机械系统与振动全国重点实验室,上海 200240
Nonlinear model predictive trajectory tracking for valve-controlled cylinder with counterbalance valve
Qi WEI(),Jianfeng TAO*(),Hao SUN,Yulei ZHANG,Chengliang LIU
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(2512 KB)   HTML
摘要:

为了解决含平衡阀阀控缸系统轨迹跟踪控制易失稳振荡的问题,提出非线性模型预测控制(NMPC)的轨迹跟踪方法. 基于含平衡阀阀控缸系统的微分-代数方程模型,通过方程变换与合理简化,构建仿射非线性状态空间模型. 通过部分反馈线性化分析该模型,分离出系统的零动态,揭示了含平衡阀系统难以全局镇定的根源,即零动态稳定性条件不易解析获取. 为了解决该难题,构造局部控制Lyapunov函数(CLF),证明系统具有局部可镇定性. 提出NMPC控制器,在优化代价函数中增加平衡阀阀芯镇定项,利用CLF水平集设计终端代价与终端不等约束,保证NMPC的局部渐近稳定性. 与传统的模型前馈-反馈控制进行实验对比,在同等的轨迹跟踪误差水平下,提出方法在240 kg末端负载下的振动振幅平均下降88.19%,证明利用提出方法,可以在保证稳定性的基础上具有较高的轨迹跟踪精度.

关键词: 平衡阀阀控液压缸非线性模型预测控制轨迹跟踪振动抑制    
Abstract:

A nonlinear model predictive control (NMPC) method for trajectory tracking was proposed to address instability issues in valve-controlled cylinders with counterbalance valves. An affine nonlinear state-space model was derived through transformation and simplification based on the differential-algebraic equation model. Partial feedback linearization was used to derive the zero dynamics, revealing that the difficulty in analytically obtaining stability conditions for zero dynamics was the fundamental reason to global stabilization in systems with counterbalance valves. A local control Lyapunov function (CLF) was constructed to resolve this difficulty in order to prove the local stabilizability of the system. A NMPC controller was developed. A stabilization term for the counterbalance valve spool was incorporated in the cost function. Terminal cost and constraints were designed by using CLF level set in order to ensure the local asymptotic stability of the controller. The proposed method reduced oscillation amplitude by an average of 88.19% under a 240 kg terminal load while maintaining the same level of trajectory tracking error compared with traditional feedforward-feedback control in experiments. The proposed method achieves high tracking accuracy while ensuring stability.

Key words: counterbalance valve    valve-controlled hydraulic cylinder    nonlinear model predictive control    trajectory tracking    oscillation suppression
收稿日期: 2024-07-03 出版日期: 2025-07-28
:  TP 23  
基金资助: 国家自然科学基金资助项目(52075320).
通讯作者: 陶建峰     E-mail: v7sjtu@sjtu.edu.cn;jftao@sjtu.edu.cn
作者简介: 魏齐(1996—),男,博士生,从事液压机械臂非线性控制的研究. orcid.org/0000-0002-4431-3338. E-mail:v7sjtu@sjtu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
魏齐
陶建峰
孙浩
张宇磊
刘成良

引用本文:

魏齐,陶建峰,孙浩,张宇磊,刘成良. 含平衡阀阀控缸的非线性模型预测轨迹跟踪[J]. 浙江大学学报(工学版), 2025, 59(8): 1565-1573.

Qi WEI,Jianfeng TAO,Hao SUN,Yulei ZHANG,Chengliang LIU. Nonlinear model predictive trajectory tracking for valve-controlled cylinder with counterbalance valve. Journal of ZheJiang University (Engineering Science), 2025, 59(8): 1565-1573.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.08.002        https://www.zjujournals.com/eng/CN/Y2025/V59/I8/1565

图 1  含平衡阀阀控液压缸的原理图
图 2  提出的NMPC轨迹跟踪控制器框图
图 3  控制器的实现和信号细节图示
控制器参数设置值代价函数系数设置值
预测/控制时域N12步轨迹误差项系数$ Q $2.0
控制周期$ {T_{\text{s}}} $/s0.01输入项系数$ R $0.1
速度观测器周期/ms0.1阀芯镇定项系数$ S $10.0
迭代次数限制60终端CLF系数$ {Q_{\text{f}}} $1.0
表 1  NMPC的参数和配置
图 4  用于验证的可变负载运动控制实验台
图 5  实验台的不同负载力工况
实验台配置参数/型号实验台配置参数/型号
液压缸型号ATOS CKN平衡阀SUN MWEG
液压缸行程/mm500平衡阀先导比4.5
比例伺服阀Parker D1FP平衡阀设定压力/MPa14
压力传感器Trafag 8252角度编码器禹衡JKW-6E
表 2  实验台的各参数与元件信息
图 6  用于对比的FF-PI控制器框图
控制器$ {K_{\text{p}}} $$ {K_{\text{I}}} $
所提出方法8.01.5
同增益FF-PI8.01.5
小增益FF-PI4.01.5
表 3  用于对比的控制器配置
图 7  实验用的预规划参考轨迹
图 8  不同工况下的位置轨迹跟踪
图 9  无末端负载下不同控制器的液压驱动力曲线
图 10  无末端负载下不同控制器的液压驱动力功率谱密度
图 11  240 kg负载下所提出不同控制器的液压驱动力曲线
图 12  240 kg负载下不同控制器的液压驱动力功率谱密度
控制器负载工况/kg$ {G}_{i} $/dB${\eta _i}$/%
同增益FF-PI1.905635.52
小增益FF-PI0.061.36
同增益FF-PI2409.2888.19
小增益FF-PI2405.7173.18
表 4  提出方法与FF-PI控制器的平均液压力振幅对比
图 13  不同控制器轨迹跟踪的误差箱线图
图 14  不同控制器轨迹跟踪的均方误差
1 张海平. 液压平衡阀应用技术 [M]. 北京: 机械工业出版社, 2017: 50−113.
2 YAO Y, ZHOU H, CHEN Y, et al. Stability analysis of a pilot operated counterbalance valve for a big flow rate [C]// ASME/BATH 2014 Symposium on Fluid Power and Motion Control. Bath: ASME, 2014: V001T01A005.
3 SREEHARSHA R, BHOLA M, KUMAR N, et al. Energy saving analysis using pilot operated counter balance valve [M]//Advances in engineering design. Singapore: Springer, 2019: 279–287.
4 JENSEN K J, EBBESEN M K, HANSEN M R Adaptive feedforward control of a pressure compensated differential cylinder[J]. Applied Sciences, 2020, 10 (21): 7847
doi: 10.3390/app10217847
5 KOZLOV L, POLISHCHUK L, PIONTKEVYCH O, et al Experimental research characteristics of counterbalance valve for hydraulic drive control system of mobile machine[J]. Przegląd Elektrotechniczny, 2019, 1 (4): 106- 111
doi: 10.15199/48.2019.04.18
6 SCIANCALEPORE A, VACCA A, PENA O, et al. Lumped parameter modeling of counterbalance valves considering the effect of flow forces [C]// ASME/BATH 2019 Symposium on Fluid Power and Motion Control. Longboat Key: ASME, 2019: V001T01A022.
7 RITURAJ R, SCHEIDL R Towards digital twin development of counterbalance valves: modelling and experimental investigation[J]. Mechanical Systems and Signal Processing, 2023, 188: 110049
doi: 10.1016/j.ymssp.2022.110049
8 SUN H, TAO J, QIN C, et al Optimal energy consumption and response capability assessment for hydraulic servo systems containing counterbalance valves[J]. Journal of Mechanical Design, 2023, 145 (5): 053501
doi: 10.1115/1.4056497
9 NORDHAMMER P, BAK M, HANSEN M. Controlling the slewing motion of hydraulically actuated cranes using sequential activation of counterbalance valves [C]// 12th International Conference on Control, Automation and Systems. Jeju: IEEE, 2012: 773-778.
10 NORDHAMMER P, BAK M, HANSEN M. A method for reliable motion control of pressure compensated hydraulic actuation with counterbalance valves [C]// 12th International Conference on Control, Automation and Systems. Jeju: IEEE, 2012: 759-763.
11 RITELLI G F, VACCA A Energetic and dynamic impact of counterbalance valves in fluid power machines[J]. Energy Conversion and Management, 2013, 76: 701- 711
doi: 10.1016/j.enconman.2013.08.021
12 SØRENSEN J K, HANSEN M R, EBBESEN M K Novel concept for stabilising a hydraulic circuit containing counterbalance valve and pressure compensated flow supply[J]. International Journal of Fluid Power, 2016, 17 (3): 153- 162
doi: 10.1080/14399776.2016.1172446
13 SUN H, TAO J, QIN C, et al Dynamics modeling and bifurcation analysis for valve-controlled hydraulic cylinder system containing counterbalance valves[J]. Journal of Vibration Engineering and Technologies, 2021, 9 (8): 1941- 1957
doi: 10.1007/s42417-021-00342-6
14 ŁOPATKA M J, KROGUL P, RUBIEC A, et al Preliminary experimental research on the influence of counterbalance valves on the operation of a heavy hydraulic manipulator during long-range straight-line movement[J]. Energies, 2022, 15 (15): 5596
doi: 10.3390/en15155596
15 CRISTOFORI D, VACCA A, ARIYUR K A novel pressure-feedback based adaptive control method to damp instabilities in hydraulic machines[J]. SAE International Journal of Commercial Vehicles, 2012, 5 (2): 586- 596
doi: 10.4271/2012-01-2035
16 KJELLAND M B, HANSEN M R Using input shaping and pressure feedback to suppress oscillations in slewing motion of lightweight flexible hydraulic crane[J]. International Journal of Fluid Power, 2015, 16 (3): 141- 148
doi: 10.1080/14399776.2015.1089071
17 JOSE J T, DAS J, MISHRA S Kr Dynamic improvement of hydraulic excavator using pressure feedback and gain scheduled model predictive control[J]. IEEE Sensors Journal, 2021, 21 (17): 18526- 18534
doi: 10.1109/JSEN.2021.3083677
18 JIA R, ZHANG J, DING R, et al Active damping control of the large-scale flexible hydraulic manipulators with independent metering system[J]. International Journal of Fluid Power, 2024, 25 (2): 163- 182
19 ISIDORI A The zero dynamics of a nonlinear system: from the origin to the latest progresses of a long successful story[J]. European Journal of Control, 2013, 19 (5): 369- 378
doi: 10.1016/j.ejcon.2013.05.014
20 ISIDORI A. Elementary theory of nonlinear feedback for single-input single-output systems [M]// Nonlinear control systems. London: Springer, 1995: 137–217.
21 MAYNE D Q, RAWLINGS J B, RAO C V, et al Constrained model predictive control: stability and optimality[J]. Automatica, 2000, 36 (6): 789- 814
doi: 10.1016/S0005-1098(99)00214-9
[1] 叶身村,周兵,柴天,干年妃,贺帅. 不可避撞场景下的车辆碰撞损伤最小化策略[J]. 浙江大学学报(工学版), 2025, 59(2): 362-374.
[2] 刘宜成,杨迦凌,唐瑞,程靖. 柔性空间机器人预定义时间自适应滑模控制[J]. 浙江大学学报(工学版), 2025, 59(2): 351-361.
[3] 孙炜,刘恒,陶建峰,孙浩,刘成良. 基于IndRNN-1DLCNN的负载口独立控制阀控缸系统故障诊断[J]. 浙江大学学报(工学版), 2023, 57(10): 2028-2041.
[4] 洪梦情,丁萌,顾秀涛,郭毓. 双臂空间机器人的固定时间轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1168-1174.
[5] 于瑞,徐雪峰,周华,杨华勇. 基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(3): 436-443.
[6] 王玉琼,高松,王玉海,徐艺,郭栋,周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制[J]. 浙江大学学报(工学版), 2021, 55(10): 1922-1929.
[7] 吴海东,司振立. 基于线性矩阵不等式的智能车轨迹跟踪控制[J]. 浙江大学学报(工学版), 2020, 54(1): 110-117.
[8] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[9] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.
[10] 檀盼龙, 孙青林, 陈增强. 自抗扰技术在动力翼伞轨迹跟踪控制中的应用[J]. 浙江大学学报(工学版), 2017, 51(5): 992-999.
[11] 陶国良, 周超超, 尚策. 气动位置伺服嵌入式控制器及控制策略[J]. 浙江大学学报(工学版), 2017, 51(4): 792-799.
[12] 李树勋,范宜霖,叶琛,侯英哲,朱新炎. 基于改进设计的平衡阀开孔型线优化及试验[J]. 浙江大学学报(工学版), 2015, 49(5): 908-915.
[13] 帅鑫, 李艳君, 吴铁军. 一种柔性机械臂末端轨迹跟踪的预测控制算法[J]. J4, 2010, 44(2): 259-264.
[14] 李强, 王宣银, 程佳. Stewart液压平台轨迹跟踪自适应滑模控制[J]. J4, 2009, 43(6): 1124-1128.
[15] 陈少斌, 蒋静坪. 四轮移动机器人轨迹跟踪的最优状态反馈控制[J]. J4, 2009, 43(12): 2186-2190.