Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1284-1292    DOI: 10.3785/j.issn.1008-973X.2025.06.019
机械工程     
变曲率复合材料螺旋桨叶的赋形几何误差仿真
鲍永杰1(),张乐强1,刘真1,冀秀坤2,杨宇星1,*()
1. 大连海事大学 轮机工程学院,辽宁 大连 116026
2. 大连海事大学 船舶与海洋工程学院,辽宁 大连 116026
Simulation of shaped geometric error for variable curvature composite propeller blade
Yongjie BAO1(),Leqiang ZHANG1,Zhen LIU1,Xiukun JI2,Yuxing YANG1,*()
1. College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
2. College of Naval Architecture and Ocean Engineering, Dalian Maritime University, Dalian 116026, China
 全文: PDF(1425 KB)   HTML
摘要:

复合材料螺旋桨叶的变曲率、变厚度和叠层特征会导致预浸料赋形过程中存在几何误差. 为了明确叶片曲率与铺层应变对赋形几何误差的影响规律,通过对桨叶铺层进行三维扫描获取点云数据,建立桨叶模具预浸料铺放过程的数值模型,对预浸料铺放过程进行有限元模拟. 通过对比铺层应变试验和仿真结果验证所提出的铺放仿真模型的有效性. 提出基于法向量方向变形误差累积的评价方法,对铺层试验和仿真结果进行层间误差提取,并结合叶片曲率特征分析桨叶赋形误差. 结果表明,仿真与试验的赋形几何误差的横向偏差约为10.18%、纵向偏差约为14.22%. 桨叶赋形几何误差分布形式与其铺放过程应变分布规律一致,曲率的波动性对赋形几何误差的影响大于曲率自身差异性的影响. 赋形几何误差分布随铺层数量增加趋于V型特征,且受曲率波动性的影响越来越明显.

关键词: 赋形几何误差预浸料铺层复合材料螺旋桨叶法向量变形    
Abstract:

There are shaped geometric error in the prepreg forming process due to the variable curvature, variable thickness and laminated characteristics of composite propeller blades. In order to clarify the influence of blade curvature and ply strain on the geometric error of prepreg forming, a numerical model of the prepreg placement process inside the blade mold was established by obtaining point cloud data through three-dimensional scanning of the blade layer. The finite element simulation of the prepreg placement process was carried out. The effectiveness of the proposed laying simulation model was verified by comparing the results of layer strain tests with the simulation results. An evaluation method based on the accumulation of deformation error in the normal vector direction was proposed, and the interlayer errors from the laying test results and the simulation results were extracted. The interlayer errors were used to analyze the shaped geometric error of the blade with considering the blade curvature characteristics. Results showed that the lateral difference of the shaped geometric error between the simulation and the experiment was about 10.18%, and the longitudinal difference was about 14.22%. The distribution pattern of shaped geometric error of the blade was consistent with that of the strain distribution, and the influence of the fluctuation of the curvature on the shaped geometric error was greater than that caused by the difference in the curvature itself. The distribution of the shaped geometric error tended to be V-shaped as the number of layers increased, and the influence of curvature fluctuation became more and more obvious.

Key words: shaped geometric error    prepreg ply    composite material    propeller blade    normal vector deformation
收稿日期: 2024-04-10 出版日期: 2025-05-30
CLC:  TB 332  
基金资助: 国家自然科学基金资助项目(52301359);辽宁省应用基础研究资助项目(2022JH2,101300221).
通讯作者: 杨宇星     E-mail: yongjie@dlmu.edu.cn;yangyuxing@dlmu.edu.cn
作者简介: 鲍永杰(1980—),男,教授,博导,从事复合材料制造技术研究. orcid.org/0000-0002-8353-3157. E-mail:yongjie@dlmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
鲍永杰
张乐强
刘真
冀秀坤
杨宇星

引用本文:

鲍永杰,张乐强,刘真,冀秀坤,杨宇星. 变曲率复合材料螺旋桨叶的赋形几何误差仿真[J]. 浙江大学学报(工学版), 2025, 59(6): 1284-1292.

Yongjie BAO,Leqiang ZHANG,Zhen LIU,Xiukun JI,Yuxing YANG. Simulation of shaped geometric error for variable curvature composite propeller blade. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1284-1292.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.019        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1284

参数数值
纵向弹性模量$ {E_1}/{\rm{GPa}} $125.00
横向弹性模量$ {E_2}/{\rm{GPa}} $9.00
面内剪切模量$ {G_{12}}/{\rm{GPa}} $4.60
面内泊松比$ {v_{12}} $0.32
面外泊松比$ {v_{23}} $0.46
纵向拉伸强度$ {X_{{\mathrm{T}}}}/{\rm{MPa}} $176 0.00
纵向压缩强度$ {X_{{\mathrm{C}}}}/{\rm{MPa}} $105 0.00
横向拉伸强度$ {Y_{{\mathrm{T}}}}/{\rm{MPa}} $51.00
横向压缩强度$ {Y_{{\mathrm{C}}}}/{\rm{MPa}} $130.00
面内剪切强度$ {S_{12}}/{\rm{MPa}} $60.00
密度$ \rho /({{\mathrm{g}}\cdot{\mathrm{c}}}{{{\mathrm{m}}}^{-3}}) $1.60
表 1  T300单向碳纤维预浸料属性[4]
图 1  单层预浸料试验件尺寸
图 2  复合材料预浸料铺层铺放有限元模型
图 3  预浸料铺层铺放过程特征点应变试验
图 4  复合材料螺旋桨叶预浸料铺层
图 5  复合材料螺旋桨叶预浸料铺层三维扫描试验
图 6  预浸料铺层赋形几何误差对比的统一坐标系统
图 7  复合材料螺旋桨叶铺层赋形几何误差分析特征点
图 8  预浸料铺层误差分析的法向量方向变形评价方法
图 9  复合材料螺旋桨叶预浸料铺层铺放过程累计误差
图 10  复合材料螺旋桨叶预浸料铺层铺放过程中的特征点浮动
图 11  预浸料铺层铺放过程中的特征点应变
图 12  预浸料赋形几何误差、应变与叶片曲率分布规律
1 SELVARAJU DR S Application of composite in marine industry[J]. Journal of Engineering Research and Studies, 2011, 2: 89- 91
2 MARSH G A new start for marine propellers?[J]. Reinforced Plastics, 2004, 48 (11): 34- 38
doi: 10.1016/S0034-3617(04)00493-X
3 洪毅. 高性能复合材料螺旋桨的结构设计及水弹性优化 [D]. 哈尔滨: 哈尔滨工业大学, 2011.
HONG Yi. Structure design and hydroelastic optimization of high performance composite propeller [D]. Harbin: Harbin Institute of Technology, 2010.
4 周鑫, 童喆益, 杨文凯, 等 大厚度船用复合材料螺旋桨桨叶设计与成型工艺[J]. 船舶工程, 2022, 44 (9): 24- 28
ZHOU Xin, TONG Zheyi, YANG Wenkai, et al Design and molding process of large thichness marine composite propeller blade[J]. Ship Engineering, 2022, 44 (9): 24- 28
5 杨文志, 朱锡, 陈悦, 等 复合材料螺旋桨RTM成型工艺研究[J]. 材料科学与工艺, 2015, 23 (6): 87- 92
YANG Wenzhi, ZHU Xi, CHEN Yue, et al Research on RTM molding process of composite propeller[J]. Materials Science and Technology, 2015, 23 (6): 87- 92
6 SEARLE T, CHUDLEY J, SHORT D, et al Are composite propellers the way forward for small boats[J]. Mater World, 1994, (2): 69- 70
7 LIN C C, LEE Y J, HUNG C S Optimization and experiment of composite marine propellers[J]. Composite Structures, 2009, 89 (2): 206- 215
doi: 10.1016/j.compstruct.2008.07.020
8 王晓飞, 蔡智奇, 文秀芳, 等 风轮叶片树脂与成型工艺研究进展[J]. 化工新型材料, 2012, 40 (1): 31- 34
WANG Xiaofei, CAI Zhiqi, WEN Xiufang, et al Advance in studies of thermosetting resin and molding process of rotor blades[J]. New Chemical Materials, 2012, 40 (1): 31- 34
doi: 10.3969/j.issn.1006-3536.2012.01.010
9 张鸿名. 船用复合材料螺旋桨成型工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2009.
ZHANG Hongming. Manufacture and technique of marine composite material propeller [D]. Harbin: Harbin Institute of Technology, 2009.
10 陆九如. 碳纤维复合材料薄壁曲面构件纤维铺放方法研究 [D]. 上海: 东华大学, 2023.
LU Jiuru. Investigation of carbon fiber placement method for thin-walled composite shells [D]. Shanghai: Donghua University, 2023.
11 宋超, 李勇, 还大军, 等. 航空发动机复合材料叶片曲面可铺性研究[J]. 航空制造技术, 2015, 58(增2): 63–66.
SONG Chao, LI Yong, HUAN Dajun, et al. Study on placeability of composite blade surface of aeroengine [J]. Aeronautical Manufacturing Technology, 2015, 58(Suppl.2): 63–66.
12 GAN M C, TAN S T, CHAN K W Flattening developable bi-parametric surfaces[J]. Computers and Structures, 1996, 58 (4): 703- 708
13 AZARIADIS P, ASPRAGATHOS N Design of plane developments of doubly curved surfaces[J]. Computer-Aided Design, 1997, 29 (10): 675- 685
doi: 10.1016/S0010-4485(97)00013-4
14 王立冬. 碳纤维预浸料层间滑移性能研究及在热隔膜成型中的应用[D]. 上海: 上海交通大学, 2020.
WANG Lidong. Investigation on inter-Ply slipping behavior of carbon fiber prepreg and its application in hot diaphragm forming [D]. Shanghai: Shanghai Jiao Tong University, 2020.
15 赵盼, 史耀耀, 康超, 等 复合材料机器人纤维铺放工艺参数优化[J]. 西北工业大学学报, 2018, 36 (4): 693- 700
ZHAO Pan, SHI Yaoyao, KANG Chao, et al Optimization of process parameters for robotic fibre placement[J]. Journal of Northwestern Polytechnical University, 2018, 36 (4): 693- 700
doi: 10.3969/j.issn.1000-2758.2018.04.013
16 柯映林, 曲巍崴, 李江雄, 等 碳纤维复合材料结构件自动铺放技术与装备研究进展[J]. 机械工程学报, 2023, 59 (20): 401- 435
KE Yinglin, QU Weiwei, LI Jiangxiong, et al Researches on automated placement technologies and equipment for carbon fiber reinforced composites: a state-of-the-art review[J]. Journal of Mechanical Engineering, 2023, 59 (20): 401- 435
doi: 10.3901/JME.2023.20.401
17 秦永利, 祝颖丹, 范欣愉, 等 纤维曲线铺放制备变刚度复合材料层合板的研究进展[J]. 玻璃钢/复合材料, 2012, (1): 61- 66
QIN Yongli, ZHU Yingdan, FAN Xinyu, et al Research and development on variable-stiffness composite laminates manufactured by variable angle tow placement[J]. Fiber Reinforced Plastics/Composites, 2012, (1): 61- 66
18 BRAMPTON C J, WU K C, KIM H A New optimization method for steered fiber composites using the level set method[J]. Structural and Multidisciplinary Optimization, 2015, 52 (3): 493- 505
doi: 10.1007/s00158-015-1256-6
19 CHEN X, WU Z, NIE G, et al Buckling analysis of variable angle tow composite plates with a through-the-width or an embedded rectangular delamination[J]. International Journal of Solids and Structures, 2018, 138: 166- 180
doi: 10.1016/j.ijsolstr.2018.01.010
20 LIGUORI F S, ZUCCO G, MADEO A, et al Postbuckling optimisation of a variable angle tow composite wingbox using a multi-modal Koiter approach[J]. Thin-Walled Structures, 2019, 138: 183- 198
doi: 10.1016/j.tws.2019.01.035
21 都涛. 基于碳纤维预浸料铺放的工艺参数分析与试验研究[D]. 杭州: 浙江大学, 2018.
DU Tao. Analysis and experiment study of lay-up process parameters based on carbon fiber prepreg lay-up [D]. Hangzhou: Zhejiang University, 2018.
22 LUKASZEWICZ D H A. Optimisation of high-speed automated layup of thermoset carbon-fiber reimpregnates [D]. Bristol: University of Bristol, 2011.
23 AIZED T, SHIRINZADEH B Robotic fiber placement process analysis and optimization using response surface method[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55 (1): 393- 404
24 LI K, LIU X, JIN Y, et al Structural strength and laminate optimization of composite connecting bracket in manned spacecraft using a genetic algorithm[J]. Applied Composite Materials, 2019, 26 (2): 591- 604
doi: 10.1007/s10443-018-9736-7
25 孙海涛, 熊鹰, 黄政 复合材料螺旋桨纤维铺层的影响及预变形设计[J]. 华中科技大学学报: 自然科学版, 2014, 42 (5): 116- 121
SUN Haitao, XIONG Ying, HUANG Zheng Effect of stacking mode of composite laminates and pre-deformed design of composite marine propellers[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2014, 42 (5): 116- 121
26 BLASQUES J P, BERGGREEN C, ANDERSEN P Hydro-elastic analysis and optimization of a composite marine propeller[J]. Marine Structures, 2010, 23 (1): 22- 38
doi: 10.1016/j.marstruc.2009.10.002
27 卢秉贺, 李萍 基于Hypersizer的复合材料结构铺层设计和铺层过渡设计[J]. 科学技术与工程, 2011, 11 (22): 5482- 5485
LU Binghe, LI Ping Stacking design and stacking transition design of composite structure based on hypersizer[J]. Science Technology and Engineering, 2011, 11 (22): 5482- 5485
doi: 10.3969/j.issn.1671-1815.2011.22.062
[1] 鲍永杰,殷国运,郑植,杨宇星,陈晨,程东. 碳纤维增强热塑性复合材料的变温单点飞切去除特性[J]. 浙江大学学报(工学版), 2025, 59(3): 616-625.
[2] 王海军,王涛,俞慈君. 基于递归量化分析的CFRP超声检测缺陷识别方法[J]. 浙江大学学报(工学版), 2024, 58(8): 1604-1617.
[3] 朱佩云,李晓章,余明明,谢旭. 剪力滞对CFRP板-钢梁加固界面应力的影响[J]. 浙江大学学报(工学版), 2024, 58(5): 1020-1028.
[4] 宋小文,杜嘉成,费少华,丁会明,王金良,高宇. 微细金属Z-pin对复合材料开孔板压缩性能的影响[J]. 浙江大学学报(工学版), 2024, 58(1): 197-206.
[5] 田壮,肖官衍,金伟良,夏晋,程新. 基于复合材料理论的混凝土内多离子扩散模型[J]. 浙江大学学报(工学版), 2023, 57(7): 1393-1401.
[6] 费少华,丁会明,汪海晋,李江雄. 基于超声引导的微细Z-pin植入系统[J]. 浙江大学学报(工学版), 2023, 57(4): 657-665.
[7] 高鹏,曾学波,吴宜龙,彭飞. 碳纤维布约束型钢混凝土矩形柱轴压承载力[J]. 浙江大学学报(工学版), 2022, 56(5): 890-900, 908.
[8] 刘桦珍,周昊. ZnO/g-C3N4光催化剂在微流控芯片中的光催化性能[J]. 浙江大学学报(工学版), 2022, 56(3): 476-484.
[9] 张红哲,张旭,朱晓春,鲍永杰. 基于单颗磨粒划切试验的SiCp/Al复合材料表面去除机理研究[J]. 浙江大学学报(工学版), 2022, 56(2): 388-397.
[10] 洪林,栾丛丛,姚鑫骅,董宁国,纪毓杨,牛成成,丁泽泉,宋学宇,傅建中. 碳纤维复合材料原位增材制造设备与工艺[J]. 浙江大学学报(工学版), 2022, 56(11): 2119-2126.
[11] 李庆华,暴宁,王国仲. UHTCC与钢材界面的剪切型断裂试验研究[J]. 浙江大学学报(工学版), 2022, 56(1): 84-91.
[12] 姜孝男,徐刚,陈卫祥. Z-CoS2-MoS2/rGO的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2022, 56(1): 152-160.
[13] 严守靖,王洋洋,迟凤霞,罗雪. 空心玻璃微珠/纳米TiO2复合材料的制备与表征[J]. 浙江大学学报(工学版), 2021, 55(4): 713-719.
[14] 杨立宁,张永弟,王金业,常宏杰,杨光. 连续碳纤维增强金属基复合材料增材制造工艺[J]. 浙江大学学报(工学版), 2021, 55(11): 2084-2090.
[15] 冯炳,陈勇,崔旭,沈国辉,徐海巍. 考虑剪切变形的轴心受压GFRP圆管临界荷载[J]. 浙江大学学报(工学版), 2021, 55(10): 1894-1902.