机械工程、能源工程 |
|
|
|
|
ZnO/g-C3N4光催化剂在微流控芯片中的光催化性能 |
刘桦珍( ),周昊*( ) |
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027 |
|
Photocatalytic performance of ZnO/g-C3N4 composite photocatalysts in microfluidic reactors |
Hua-zhen LIU( ),Hao ZHOU*( ) |
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China |
1 |
LEWIS N S, CRABTREE G, NOZIK A J, et al. Basic research needs for solar energy utilization. Report of the basic energy sciences workshop on solar energy utilization, April 18-21, 2005 [R/OL]. (2005-04-21)[2021-03-07].https://www.osti.gov/biblio/899136-uy8Fy6.
|
2 |
BALZANI V, CREDI A, VENTURI M Photochemical conversion of solar energy[J]. ChemSusChem: Chemistry and Sustainability Energy and Materials, 2008, 1 (1/2): 26- 58
|
3 |
TAKATA T, JIANG J, SAKATA Y, et al Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 2020, 581 (7809): 411- 414
doi: 10.1038/s41586-020-2278-9
|
4 |
OLOWOYO J O, KUMAR M, JAIN S L, et al Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: significance of sulfur doping [J]. International Journal of Hydrogen Energy, 2018, 43 (37): 17682- 17695
doi: 10.1016/j.ijhydene.2018.07.193
|
5 |
CHEN P, WANG H, LIU H, et al Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La[J]. Applied Catalysis B: Environmental, 2019, 242: 19- 30
doi: 10.1016/j.apcatb.2018.09.078
|
6 |
SERRá A, ZhANG Y, SEPúLVEDA B, et al Highly active ZnO-based biomimetic fern-like microleaves for photocatalytic water decontamination using sunlight[J]. Applied Catalysis B: Environmental, 2019, 248: 129- 146
doi: 10.1016/j.apcatb.2019.02.017
|
7 |
SAMPAIO M J, LIMA M J, BAPTISTA D L, et al Ag-loaded ZnO materials for photocatalytic water treatment[J]. Chemical Engineering Journal, 2017, 318: 95- 102
doi: 10.1016/j.cej.2016.05.105
|
8 |
SCARISOREANU M, ILIE A G, GONCEARENCO E, et al Ag, Au and Pt decorated TiO2 biocompatible nanospheres for UV and vis photocatalytic water treatment [J]. Applied Surface Science, 2020, 509: 145217
doi: 10.1016/j.apsusc.2019.145217
|
9 |
RAVICHANDRAN K, MOHAN R, SAKTHIVEL B, et al Enhancing the photocatalytic efficiency of sprayed ZnO thin films through double doping (Sn+F) and annealing under different ambiences[J]. Applied Surface Science, 2014, 321: 310- 317
doi: 10.1016/j.apsusc.2014.10.023
|
10 |
LEE K M, LAI C W, NGAI K S, et al Recent developments of zinc oxide based photocatalyst in water treatment technology: a review[J]. Water Research, 2016, 88: 428- 448
doi: 10.1016/j.watres.2015.09.045
|
11 |
SUN L, ZHAO X, JIA C J, et al Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies [J]. Journal of Materials Chemistry, 2012, 22 (44): 23428- 23438
doi: 10.1039/c2jm34965e
|
12 |
WANG X, MAEDA K, THOMAS A, et al A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8 (1): 76
doi: 10.1038/nmat2317
|
13 |
YAN S C, LI Z S, ZOU Z G Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir, 2009, 25 (17): 10397- 10401
doi: 10.1021/la900923z
|
14 |
MAO J, PENG T, ZHANG X, et al Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light [J]. Catalysis Science and Technology, 2013, 3 (5): 1253- 1260
doi: 10.1039/c3cy20822b
|
15 |
CAO S W, LIU X F, YUAN Y P, et al Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts [J]. Applied Catalysis B: Environmental, 2014, 147: 940- 946
doi: 10.1016/j.apcatb.2013.10.029
|
16 |
LIU Y, LIU H, ZHOU H, et al A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation [J]. Applied Surface Science, 2019, 466: 133- 140
doi: 10.1016/j.apsusc.2018.10.027
|
17 |
WANG Y, BAO S, LIU Y, et al Efficient photocatalytic reduction of Cr (VI) in aqueous solution over CoS2/g-C3N4-rGO nanocomposites under visible light [J]. Applied Surface Science, 2020, 510: 145495
doi: 10.1016/j.apsusc.2020.145495
|
18 |
LEBLEBICI M E, STEFANIDIS G D, VAN GERVEN T Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment[J]. Chemical Engineering and Processing: Process Intensification,, 2015, 97: 106- 111
|
19 |
DIJKSTRA M F J, PANNEMAN H J, WINKELMAN J G M, et al Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst[J]. Chemical Engineering Science,, 2002, 57 (22/23): 4895- 4907
|
20 |
WANG N, TAN F, WAN L, et al Microfluidic reactors for visible-light photocatalytic water purification assisted with thermolysis[J]. Biomicrofluidics, 2014, 8 (5): 054122
doi: 10.1063/1.4899883
|
21 |
LEI L, WANG N, ZHANG X M, et al Optofluidic planar reactors for photocatalytic water treatment using solar energy[J]. Biomicrofluidics, 2010, 4 (4): 043004
doi: 10.1063/1.3491471
|
22 |
WANG K, LI Q, LIU B, et al Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance [J]. Applied Catalysis B: Environmental, 2015, 176: 44- 52
|
23 |
LIAO W, WANG N, WANG T, et al Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification[J]. Biomicrofluidics, 2016, 10 (1): 014123
doi: 10.1063/1.4942947
|
24 |
LI Y, LIU X, TAN L, et al Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation [J]. Advanced Functional Materials, 2018, 28 (30): 1800299
doi: 10.1002/adfm.201800299
|
25 |
LI Y, ZHANG H, LIU P, et al Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity [J]. Small, 2013, 9 (19): 3336- 3344
|
26 |
GOETTMANN F, FISCHER A, ANTONIETTI M, et al Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel–Crafts reaction of benzene[J]. Angewandte Chemie: International Edition, 2006, 45 (27): 4467- 4471
doi: 10.1002/anie.200600412
|
27 |
CHAO J, CHEN Y, XING S, et al Facile fabrication of ZnO/C nanoporous fibers and ZnO hollow spheres for high performance gas sensor[J]. Sensors and Actuators B: Chemical, 2019, 298: 126927
doi: 10.1016/j.snb.2019.126927
|
28 |
WANG Y, SHI R, LIN J, et al Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J]. Energy and Environmental Science, 2011, 4 (8): 2922- 2929
doi: 10.1039/c0ee00825g
|
29 |
YU J, WANG K, XIAO W, et al Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts [J]. Physical Chemistry Chemical Physics, 2014, 16 (23): 11492- 11501
doi: 10.1039/c4cp00133h
|
30 |
ZOU J P, WANG L C, LUO J, et al Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst [J]. Applied Catalysis B: Environmental, 2016, 193: 103- 109
doi: 10.1016/j.apcatb.2016.04.017
|
31 |
XU M, HAN L, DONG S Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity [J]. ACS Applied Materials and Interfaces, 2013, 5 (23): 12533- 12540
doi: 10.1021/am4038307
|
32 |
LABHANE P K, HUSE V R, PATLE L B, et al Synthesis of Cu doped ZnO nanoparticles: crystallographic, optical, FTIR, morphological and photocatalytic study[J]. Journal of Materials Science and Chemical Engineering, 2015, 3 (7): 39
doi: 10.4236/msce.2015.37005
|
33 |
SHARMA D, RAJPUT J, KAITH B S, et al Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties[J]. Thin Solid Films, 2010, 519 (3): 1224- 1229
doi: 10.1016/j.tsf.2010.08.073
|
34 |
VAIANO V, MATARANGOLO M, MURCIA J J, et al Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B: Environmental, 2018, 225: 197- 206
doi: 10.1016/j.apcatb.2017.11.075
|
35 |
CHIDHAMBARAM N, RAVICHANDRAN K Fabrication of ZnO/g-C3N4 nanocomposites for enhanced visible light driven photocatalytic activity [J]. Materials Research Express, 2017, 4 (7): 075037
doi: 10.1088/2053-1591/aa7abd
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|