Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (3): 476-484    DOI: 10.3785/j.issn.1008-973X.2022.03.006
机械工程、能源工程     
ZnO/g-C3N4光催化剂在微流控芯片中的光催化性能
刘桦珍(),周昊*()
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Photocatalytic performance of ZnO/g-C3N4 composite photocatalysts in microfluidic reactors
Hua-zhen LIU(),Hao ZHOU*()
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1660 KB)   HTML
摘要:

采用浸渍法合成ZnO质量分数不同的ZnO/g-C3N4复合光催化剂,分析样品的结构、形态、化学组成和光学性能等. 将制备好的样品固定到微流控芯片中,降解不同的染料(亚甲基蓝、中性红、孔雀石绿、罗丹明B),评价样品在可见光下的光催化性能. 样品的表征结果表明,在ZnO/g-C3N4复合物中,ZnO、g-C3N4间存在相互作用,ZnO/g-C3N4复合物对可见光的利用更为充分;与g-C3N4相比,在ZnO/g-C3N4复合物中光生电子-空穴对的复合明显被抑制. 光催化实验结果表明,6 % ZnO/g-C3N4具有最佳光催化性能,在光照强度为60 klx,液体流速为20 μL/min时,其对罗丹明B溶液的降解效率为98.9%.多次循环后的光催化降解亚甲基蓝性能研究表明,样品在微流控芯片中进行光催化降解实验具有稳定性和可靠性.

关键词: ZnO/g-C3N4复合材料光催化技术微流控芯片降解染料    
Abstract:

The ZnO/g-C3N4 composite photocatalysts with different mass fractions of ZnO were synthesized by a simple impregnation method. The structure, morphology, chemical compositions and optical properties of the samples were analyzed. The as-prepared samples were fixed to microfluidic reactors, respectively. The photocatalytic performance of these reactors was evaluated by the degradation of different dyes (methylene blue, neutral red, malachite green, and rhodamine B) under visible light. The characterization indicated that there was an interaction between ZnO and g-C3N4 in the as-prepared composite. And the composite could make good use of visible light. Also, compared with g-C3N4, the recombination of photogenerated electron-hole pairs in the composite was obviously inhibited. The results of photocatalytic experiments displayed that 6% ZnO/g-C3N4 exhibited the best photocatalytic performance compared to other mass fractions of ZnO. When the light intensity was 60 klx and the liquid flow rate was 20 μL/min, the degradation efficiency of rhodamine B solution reached 98.9%. The photocatalytic degradation of methylene blue by multiple cycle tests was also studied, indicating the sample's stability and reliability when conducting photocatalytic degradation experiments in microfluidic reactors.

Key words: ZnO/g-C3N4 composite    photocatalytic technology    microfluidic reactor    degradation of dye
收稿日期: 2021-03-26 出版日期: 2022-03-29
CLC:  X 703  
基金资助: 国家自然科学基金创新研究群体项目(51621005)
通讯作者: 周昊     E-mail: 21827029@zju.edu.cn;zhouhao@zju.edu.cn
作者简介: 刘桦珍(1997—),女,硕士生,从事微流控芯片中的光催化反应研究. orcid.org/0000-0003-2149-0232.E-mail: 21827029@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘桦珍
周昊

引用本文:

刘桦珍,周昊. ZnO/g-C3N4光催化剂在微流控芯片中的光催化性能[J]. 浙江大学学报(工学版), 2022, 56(3): 476-484.

Hua-zhen LIU,Hao ZHOU. Photocatalytic performance of ZnO/g-C3N4 composite photocatalysts in microfluidic reactors. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 476-484.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.006        https://www.zjujournals.com/eng/CN/Y2022/V56/I3/476

图 1  微流控芯片的实物图和微通道的设计图
图 2  微流控芯片的制作过程
图 3  实验系统示意图
图 4  制备的CN, ZnO和ZnO/CN复合物XRD谱图
图 5  CN、ZnO和6% ZnO/CN的SEM图和6% ZnO/CN的EDS图
图 6  CN、ZnO和6% ZnO/CN光催化剂的FT-IR谱图
图 7  CN、ZnO和6% ZnO/CN的高分辨率光谱
图 8  CN、ZnO和6% ZnO/CN复合物的光学性能分析
图 9  激发波长为365 nm时CN、ZnO/CN复合材料的PL谱图
图 10  不同流速下的光催化降解MB性能(光强:50 klx)
图 11  不同光照度下的光催化降解MB性能(流速:20 μL/min)
图 12  光催化降解MB循环实验(光强:60 klx,流速:20 μL/min)
图 13  不同催化剂的光催化降解NR, MG和MB性能(光强:60 klx,流速:20 μL/min)
1 LEWIS N S, CRABTREE G, NOZIK A J, et al. Basic research needs for solar energy utilization. Report of the basic energy sciences workshop on solar energy utilization, April 18-21, 2005 [R/OL]. (2005-04-21)[2021-03-07].https://www.osti.gov/biblio/899136-uy8Fy6.
2 BALZANI V, CREDI A, VENTURI M Photochemical conversion of solar energy[J]. ChemSusChem: Chemistry and Sustainability Energy and Materials, 2008, 1 (1/2): 26- 58
3 TAKATA T, JIANG J, SAKATA Y, et al Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 2020, 581 (7809): 411- 414
doi: 10.1038/s41586-020-2278-9
4 OLOWOYO J O, KUMAR M, JAIN S L, et al Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: significance of sulfur doping [J]. International Journal of Hydrogen Energy, 2018, 43 (37): 17682- 17695
doi: 10.1016/j.ijhydene.2018.07.193
5 CHEN P, WANG H, LIU H, et al Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La[J]. Applied Catalysis B: Environmental, 2019, 242: 19- 30
doi: 10.1016/j.apcatb.2018.09.078
6 SERRá A, ZhANG Y, SEPúLVEDA B, et al Highly active ZnO-based biomimetic fern-like microleaves for photocatalytic water decontamination using sunlight[J]. Applied Catalysis B: Environmental, 2019, 248: 129- 146
doi: 10.1016/j.apcatb.2019.02.017
7 SAMPAIO M J, LIMA M J, BAPTISTA D L, et al Ag-loaded ZnO materials for photocatalytic water treatment[J]. Chemical Engineering Journal, 2017, 318: 95- 102
doi: 10.1016/j.cej.2016.05.105
8 SCARISOREANU M, ILIE A G, GONCEARENCO E, et al Ag, Au and Pt decorated TiO2 biocompatible nanospheres for UV and vis photocatalytic water treatment [J]. Applied Surface Science, 2020, 509: 145217
doi: 10.1016/j.apsusc.2019.145217
9 RAVICHANDRAN K, MOHAN R, SAKTHIVEL B, et al Enhancing the photocatalytic efficiency of sprayed ZnO thin films through double doping (Sn+F) and annealing under different ambiences[J]. Applied Surface Science, 2014, 321: 310- 317
doi: 10.1016/j.apsusc.2014.10.023
10 LEE K M, LAI C W, NGAI K S, et al Recent developments of zinc oxide based photocatalyst in water treatment technology: a review[J]. Water Research, 2016, 88: 428- 448
doi: 10.1016/j.watres.2015.09.045
11 SUN L, ZHAO X, JIA C J, et al Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies [J]. Journal of Materials Chemistry, 2012, 22 (44): 23428- 23438
doi: 10.1039/c2jm34965e
12 WANG X, MAEDA K, THOMAS A, et al A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8 (1): 76
doi: 10.1038/nmat2317
13 YAN S C, LI Z S, ZOU Z G Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir, 2009, 25 (17): 10397- 10401
doi: 10.1021/la900923z
14 MAO J, PENG T, ZHANG X, et al Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light [J]. Catalysis Science and Technology, 2013, 3 (5): 1253- 1260
doi: 10.1039/c3cy20822b
15 CAO S W, LIU X F, YUAN Y P, et al Solar-to-fuels conversion over In2O3/g-C3N4 hybrid photocatalysts [J]. Applied Catalysis B: Environmental, 2014, 147: 940- 946
doi: 10.1016/j.apcatb.2013.10.029
16 LIU Y, LIU H, ZHOU H, et al A Z-scheme mechanism of N-ZnO/g-C3N4 for enhanced H2 evolution and photocatalytic degradation [J]. Applied Surface Science, 2019, 466: 133- 140
doi: 10.1016/j.apsusc.2018.10.027
17 WANG Y, BAO S, LIU Y, et al Efficient photocatalytic reduction of Cr (VI) in aqueous solution over CoS2/g-C3N4-rGO nanocomposites under visible light [J]. Applied Surface Science, 2020, 510: 145495
doi: 10.1016/j.apsusc.2020.145495
18 LEBLEBICI M E, STEFANIDIS G D, VAN GERVEN T Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment[J]. Chemical Engineering and Processing: Process Intensification,, 2015, 97: 106- 111
19 DIJKSTRA M F J, PANNEMAN H J, WINKELMAN J G M, et al Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst[J]. Chemical Engineering Science,, 2002, 57 (22/23): 4895- 4907
20 WANG N, TAN F, WAN L, et al Microfluidic reactors for visible-light photocatalytic water purification assisted with thermolysis[J]. Biomicrofluidics, 2014, 8 (5): 054122
doi: 10.1063/1.4899883
21 LEI L, WANG N, ZHANG X M, et al Optofluidic planar reactors for photocatalytic water treatment using solar energy[J]. Biomicrofluidics, 2010, 4 (4): 043004
doi: 10.1063/1.3491471
22 WANG K, LI Q, LIU B, et al Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance [J]. Applied Catalysis B: Environmental, 2015, 176: 44- 52
23 LIAO W, WANG N, WANG T, et al Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification[J]. Biomicrofluidics, 2016, 10 (1): 014123
doi: 10.1063/1.4942947
24 LI Y, LIU X, TAN L, et al Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation [J]. Advanced Functional Materials, 2018, 28 (30): 1800299
doi: 10.1002/adfm.201800299
25 LI Y, ZHANG H, LIU P, et al Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity [J]. Small, 2013, 9 (19): 3336- 3344
26 GOETTMANN F, FISCHER A, ANTONIETTI M, et al Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel–Crafts reaction of benzene[J]. Angewandte Chemie: International Edition, 2006, 45 (27): 4467- 4471
doi: 10.1002/anie.200600412
27 CHAO J, CHEN Y, XING S, et al Facile fabrication of ZnO/C nanoporous fibers and ZnO hollow spheres for high performance gas sensor[J]. Sensors and Actuators B: Chemical, 2019, 298: 126927
doi: 10.1016/j.snb.2019.126927
28 WANG Y, SHI R, LIN J, et al Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4[J]. Energy and Environmental Science, 2011, 4 (8): 2922- 2929
doi: 10.1039/c0ee00825g
29 YU J, WANG K, XIAO W, et al Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4–Pt nanocomposite photocatalysts [J]. Physical Chemistry Chemical Physics, 2014, 16 (23): 11492- 11501
doi: 10.1039/c4cp00133h
30 ZOU J P, WANG L C, LUO J, et al Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst [J]. Applied Catalysis B: Environmental, 2016, 193: 103- 109
doi: 10.1016/j.apcatb.2016.04.017
31 XU M, HAN L, DONG S Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity [J]. ACS Applied Materials and Interfaces, 2013, 5 (23): 12533- 12540
doi: 10.1021/am4038307
32 LABHANE P K, HUSE V R, PATLE L B, et al Synthesis of Cu doped ZnO nanoparticles: crystallographic, optical, FTIR, morphological and photocatalytic study[J]. Journal of Materials Science and Chemical Engineering, 2015, 3 (7): 39
doi: 10.4236/msce.2015.37005
33 SHARMA D, RAJPUT J, KAITH B S, et al Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties[J]. Thin Solid Films, 2010, 519 (3): 1224- 1229
doi: 10.1016/j.tsf.2010.08.073
34 VAIANO V, MATARANGOLO M, MURCIA J J, et al Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B: Environmental, 2018, 225: 197- 206
doi: 10.1016/j.apcatb.2017.11.075
35 CHIDHAMBARAM N, RAVICHANDRAN K Fabrication of ZnO/g-C3N4 nanocomposites for enhanced visible light driven photocatalytic activity [J]. Materials Research Express, 2017, 4 (7): 075037
doi: 10.1088/2053-1591/aa7abd
[1] 周帅, 吕春华, 殷学锋, 等. 相变牺牲层结合UV胶室温黏接玻璃微流控芯片[J]. J4, 2009, 43(09): 1728-1731.
[2] 谢海波 傅新 杨华勇. 非超净条件下玻璃微流控芯片加工工艺[J]. J4, 2007, 41(4): 560-563.
[3] 贺永 傅建中 陈子辰. 聚合物微流体芯片热压成型的建模研究[J]. J4, 2005, 39(12): 1911-1914.
[4] 相恒富 傅建中 陈子辰. 激光加工聚合物微流控芯片暂态烧蚀模型研究[J]. J4, 2005, 39(12): 1920-1924.