Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (3): 462-475    DOI: 10.3785/j.issn.1008-973X.2022.03.005
机械工程、能源工程     
直接空气捕集CO2吸附剂综述
王涛(),董昊,侯成龙,王欣茹
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Review of CO2 direct air capture adsorbents
Tao WANG(),Hao DONG,Cheng-long HOU,Xin-ru WANG
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1561 KB)   HTML
摘要:

综述直接空气捕集CO2吸附剂的研究进展,对比碱/碱土金属基吸附剂、金属有机框架吸附剂、负载胺基吸附剂、变湿吸附剂的优缺点,从吸附容量与胺效率、动力学与载体选择、再生方式与能耗、热稳定性与抗降解等方面对吸附剂性能进行评估. 简要叙述相关工程示范项目和技术经济性;总结研究中存在的问题,展望未来的研究方向.

关键词: 直接空气捕集CO2捕集吸附剂吸附性能变湿吸附    
Abstract:

The research progress of direct air capture CO2 adsorbents was reviewed. The advantages and disadvantages of alkali/alkaline metal based adsorbents, metal organic framework adsorbents, amine loaded adsorbents and moisture swing adsorbents were compared. Meanwhile, the properties of adsorbents from the aspects of adsorption capacity and amine efficiency, kinetics and supporters, regeneration mode and energy consumption, thermal stability and resistance to degradation were evaluated. Additionally, the related engineering demonstration projects and economic evaluation were briefly discussed. Finally, the problems existing in the current research were summarized, and the future research direction was prospected.

Key words: direct air capture    CO2 capture    adsorbents    adsorption capacity    moisture swing adsorption
收稿日期: 2021-07-14 出版日期: 2022-03-29
CLC:  X 511  
基金资助: 国家自然科学基金资助项目(51676169);浙江省自然科学基金杰青项目(LR19E060002)
作者简介: 王涛(1980—),男,教授,从事温室气体控制研究. orcid.org/0000-0002-0535-7821. E-mail: oatgnaw@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王涛
董昊
侯成龙
王欣茹

引用本文:

王涛,董昊,侯成龙,王欣茹. 直接空气捕集CO2吸附剂综述[J]. 浙江大学学报(工学版), 2022, 56(3): 462-475.

Tao WANG,Hao DONG,Cheng-long HOU,Xin-ru WANG. Review of CO2 direct air capture adsorbents. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 462-475.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.005        https://www.zjujournals.com/eng/CN/Y2022/V56/I3/462

名称 技术类型 技术成熟度 碳减排潜力 /(Gt) c /($·t?1)
生物质能结合碳捕集与封存技术 技术 示范 100~1 170 15~85
直接空气捕集与封存 技术 示范 108~1 000 135~345
强化矿物风化 强化自然过程 基础研究 100~367 50~200
土地管理与生物炭生产 强化自然过程 早期应用 78~1 468 30~120
海洋施肥与碱化 强化自然过程 技术研究 55~1 027
植树造林与再造林 自然过程 早期应用 80~260 5~50
表 1  主要的负碳排放技术
图 1  从空气中分离CO2的理论自由能需求
图 2  用以负载胺基的多孔载体[33-38]
图 3  吸附剂侧传质示意图
图 4  基于变温-真空再生的直接空气捕集工艺
图 5  变湿吸附原理示意图
图 6  CO2变湿吸附反应路径
图 7  季铵功能化介孔吸附剂制备路线
图 8  用于直接空气捕集的固体吸附材料性能对比
研究机构 地点 年份 规模 循环过程 吸附/吸收剂 捕集量 EDAC/
(GJ·t?1)
c/
($·t?1
Carbon Engineering[62] 加拿大 2015 中试试点 TSA 高温溶液吸收(KOH) 1 t/d 10
Carbon Engineering[62] 加拿大 2017 中试试点 TSA 高温溶液吸收(KOH) 捕获的CO2用于生产液体燃料,产量为1桶/d
Carbon Engineering[62] 加拿大 2023 (预计) 商业工厂 TSA 1 Mt/a 35 $/t用于提高石油采收率,
50 $/t用于封存
特温特大学 荷兰 2019 样机 TSA 商业胺基聚合物LewatitVPOC1065 0.004 t/d 2.1~4.5 150~200
Climeworks[63-64] 瑞士 2011 样机 TVSA 氨丙基嫁接NFC 2.47 t/d 92
Climeworks[63-64] 德国 2014 中试试点 TVSA 固体胺 80%捕获的CO2转化合成柴油
Climeworks[63-64] 瑞士 2017 商业装置 TVSA 900 t/a
Oy Hydrocell 芬兰 2018 小试装置 TVSA 氨丙基嫁接NFC 0.003 8 t/d 92
Carbfix 冰岛 2017 商业工厂 TVSA 世界上最大DAC/增强风化耦合系统
Climeworks + Carbfix 冰岛 2022 (预计) 商业工厂 TVSA 4 000 t/a
渥太华大学、
莫纳什大学[65-66]
澳大利亚 2020 样机 TVSA MOF/聚合物纳米复合物涂覆 0.001 t/d 5.76 35~350
Global Thermostat、
佐治亚理工学院[67]
美国 2018 商业工厂 S-TSA 胺基蜂窝陶瓷、MOF 10.96 t/d 5.83~7.9 60~190
苏黎世联邦理工学院、
莫纳什大学、上海交通大学
2020 实验室 S-TVSA 固态胺 2.3~7.6
哥伦比亚大学、
亚利桑那州立大学、浙江大学
样机 MSA 阴离子交换树脂 121.3
表 2  直接空气捕集示范项目情况
图 9  部分公司直接空气捕集示范装置或工作原理示意图
图 10  直接空气捕集技术成本对比
1 SIEGMUND P, ABERMANN J, BADDOUR O, et al. The global climate in 2015–2019 [R]. Geneva: World Meteorological Organization, 2020.
2 MASSON D V, ZHAI P, PÖRTNER H O, et al. An IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [R]. Geneva: Intergovernmental Panel on Climate Change, 2018.
3 FRIEDLINGSTEIN P, O'SULLIVAN M, JONES M W, et al Global carbon budget 2020[J]. Earth System Science Data, 2020, 12 (4): 3269- 3340
doi: 10.5194/essd-12-3269-2020
4 中华人民共和国国务院新闻办公室. 政府白皮书: 新时代的中国能源发展[R/OL]. (2020-12-21)[2021-03-01]. http://www.gov.cn/zhengce/2020-12/21/content_5571916.htm
5 International Energy Agency. Energy technology perspectives 2020 [R]. Paris: International Energy Agency, 2020.
6 MINX J C, LAMB W F, CALLAGHAN M W, et al Negative emissions—part 1: research landscape and synthesis[J]. Environmental Research Letters, 2018, 13 (6): 063001
doi: 10.1088/1748-9326/aabf9b
7 FUSS S, LAMB W F, CALLAGHAN M W, et al Negative emissions—part 2: costs, potentials and side effects[J]. Environmental Research Letters, 2018, 13 (6): 063002
doi: 10.1088/1748-9326/aabf9f
8 LACKNER K S. Capture of carbon dioxide from ambient air[J]. The European Physical Journal Special Topics, 2009, 176: 93- 106
doi: 10.1140/epjst/e2009-01150-3
9 KEITH D W Why capture CO2 from the atmosphere? [J]. Science, 2009, 325 (5948): 1654- 1655
doi: 10.1126/science.1175680
10 JONES C W CO2 capture from dilute gases as a component of modern global carbon management [J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2 (1): 31- 52
doi: 10.1146/annurev-chembioeng-061010-114252
11 ROCHELLE G T Amine scrubbing for CO2 capture [J]. Science, 2009, 325 (5948): 1652- 1654
doi: 10.1126/science.1176731
12 KIANI A, JIANG K, FERON P Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process [J]. Frontiers in Energy Research, 2020, 8 (92): 1- 13
13 SHI X, XIAO H, AZARABADI H, et al Sorbents for the direct capture of CO2 from ambient air [J]. Angewandte Chemie International Edition, 2020, 59 (18): 6984- 7006
doi: 10.1002/anie.201906756
14 NIKULSHINA V, GáLVEZ M E, STEINFELD A Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle [J]. Chemical Engineering Journal, 2007, 129 (1/3): 75- 83
15 NIKULSHINA V, AYESA N, GáLVEZ M E, et al Feasibility of Na-based thermochemical cycles for the capture of CO2 from air: thermodynamic and thermogravimetric analyses [J]. Chemical Engineering Journal, 2008, 140 (1/3): 62- 70
16 VESELOVSKAYA J V, DEREVSCHIKOV V S, KARDASH T Y, et al Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent [J]. International Journal of Greenhouse Gas Control, 2013, 17: 332- 340
doi: 10.1016/j.ijggc.2013.05.006
17 VESELOVSKAYA J V, DEREVSCHIKOV V S, SHALYGIN A S, et al K2CO3-containing composite sorbents based on a ZrO2 aerogel for reversible CO2 capture from ambient air [J]. Microporous and Mesoporous Materials, 2021, 310: 110624
doi: 10.1016/j.micromeso.2020.110624
18 D'ALESSANDRO D M, SMIT B, LONG J R Carbon dioxide capture: prospects for new materials[J]. Angewandte Chemie International Edition, 2010, 49 (35): 6058- 6082
doi: 10.1002/anie.201000431
19 KUMAR A, MADDEN D G, LUSI M, et al Direct air capture of CO2 by physisorbent materials [J]. Angewandte Chemie International Edition, 2015, 54 (48): 14372- 14377
doi: 10.1002/anie.201506952
20 MADDEN D G, SCOTT H S, KUMAR A, et al Flue-gas and direct-air capture of CO2 by porous metal-organic materials [J]. Philosophical Transactions of The Royal Society A, 2017, 375 (2084): 1- 11
21 MCDONALD T M, LEE W R, MASON J A, et al Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc) [J]. Journal of the American Chemical Society, 2012, 134 (16): 7056- 7065
doi: 10.1021/ja300034j
22 LEE W R, HWANG S Y, RYU D W, et al Diamine-functionalized metal–organic framework: exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism [J]. Energy and Environmental Science, 2014, 7 (2): 744- 751
doi: 10.1039/C3EE42328J
23 GUO M, WU H, LV L, et al A Highly efficient and stable composite of polyacrylate and metal-organic framework prepared by interface engineering for direct air capture[J]. Applied Materials and Interfaces, 2021, 13 (18): 21775- 21785
doi: 10.1021/acsami.1c03661
24 BELMABKHOUT Y, SERNA-GUERRERO R, SAYARI A Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification [J]. Industrial and Engineering Chemistry Research, 2010, 49 (1): 359- 365
doi: 10.1021/ie900837t
25 DIDAS S A, CHOI S, CHAIKITTISILP W, et al Amine-oxide hybrid materials for CO2 capture from ambient air [J]. Accounts of Chemical Research, 2015, 48 (10): 2680- 2687
doi: 10.1021/acs.accounts.5b00284
26 SANZ-PéREZ E S, MURDOCK C R, DIDAS S A, et al Direct capture of CO2 from ambient air [J]. Chemical Reviews, 2016, 116 (19): 11840- 11876
doi: 10.1021/acs.chemrev.6b00173
27 ZHANG H, GOEPPERT A, PRAKASH G K S, et al Applicability of linear polyethylenimine supported on nano-silica for the adsorption of CO2 from various sources including dry air [J]. RSC Advances, 2015, 5 (65): 52550- 52562
doi: 10.1039/C5RA05428A
28 RIM G, FERIC T G, MOORE T, et al Solvent impregnated polymers loaded with liquid-like nanoparticle organic hybrid materials for enhanced kinetics of direct air capture and point source CO2 capture [J]. Advanced Functional Materials, 2021, 31 (21): 2010047
doi: 10.1002/adfm.202010047
29 HOLEWINSKI A, SAKWA-NOVAK M A, CARRILLO J Y, et al Aminopolymer mobility and support interactions in silica-PEI Composites for CO2 capture applications: a quasielastic neutron scattering study [J]. The Journal of Physical Chemistry B, 2017, 121 (27): 6721- 6731
doi: 10.1021/acs.jpcb.7b04106
30 CHOI S, DRESE J H, EISENBERGER P M, et al Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air [J]. Environmental Science and Technology, 2011, 45 (6): 2420- 2427
doi: 10.1021/es102797w
31 LIU F Q, WANG L, HUANG Z G, et al Amine-tethered adsorbents based on three-dimensional macroporous silica for CO2 capture from simulated flue gas and air [J]. ACS Applied Material and Interfaces, 2014, 6 (6): 4371- 4381
doi: 10.1021/am500089g
32 GOEPPERT A, CZAUN M, MAY R B, et al Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent[J]. Journal of the American Chemical Society, 2011, 133 (50): 20164- 20167
doi: 10.1021/ja2100005
33 WANG J, HUANG H, WANG M, et al Direct capture of low-concentration CO2 on mesoporous carbon-supported solid amine adsorbents at ambient temperature [J]. Industrial and Engineering Chemistry Research, 2015, 54 (19): 5319- 5327
doi: 10.1021/acs.iecr.5b01060
34 ZHU X, GE T, YANG F, et al Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides [J]. Journal of Materials Chemistry A, 2020, 8 (32): 16421- 16428
doi: 10.1039/D0TA05079B
35 LIU L, CHEN J, TAO L, et al Aminopolymer confined in ethane-silica nanotubes for CO2 capture from ambient air [J]. ChemNanoMat, 2020, 6 (7): 1096- 1103
doi: 10.1002/cnma.201900742
36 KWON H T, SAKWA-NOVAK M A, PANG S H, et al Aminopolymer-impregnated hierarchical silica structures: unexpected equivalent CO2 uptake under simulated air capture and flue gas capture conditions [J]. Chemistry of Materials, 2019, 31 (14): 5229- 5237
doi: 10.1021/acs.chemmater.9b01474
37 CHEN Z, DENG S, WEI H, et al Polyethylenimine-impregnated resin for high CO2 adsorption: an efficient adsorbent for CO2 capture from simulated flue gas and ambient air [J]. ACS Applied Material and Interfaces, 2013, 5 (15): 6937- 6945
38 SEHAQUI H, GALVEZ M E, BECATINNI V, et al Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams [J]. Environmental Science and Technology, 2015, 49 (5): 3167- 3174
doi: 10.1021/es504396v
39 WANG T, LIU J, HUANG H, et al Preparation and kinetics of a heterogeneous sorbent for CO2 capture from the atmosphere [J]. Chemical Engineering Journal, 2016, 284: 679- 686
doi: 10.1016/j.cej.2015.09.009
40 刘军. 基于湿法再生的CO2吸附材料性能及应用研究[D]. 杭州: 浙江大学, 2016: 46.
LIU Jun. Research on performance of CO2 adsorption materials and utilization based on moisture swing technology [D]. Hangzhou: Zhejiang University, 2016
41 吴禹松. 用于空气二氧化碳捕集的多孔树脂吸附剂成型及性能研究[D]. 杭州: 浙江大学, 2020: 46.
WU Yu-song. Research on formation and performance of porous resin adsorbent for direct air capture of CO2 [D]. Hangzhou: Zhejiang University, 2020.
42 孙轶敏, 王涛, 刘军, 等 湿法再生吸附剂制备及用于大气CO2的直接捕集 [J]. 环境工程学报, 2014, 8 (4): 1567- 1572
SUN Yi-min, WANG Tao, LIU Jun, et al Preparation of moisture swing adsorbent and performance test for CO2 capture from ambient air [J]. Chinese Journal of Environmental Engineering, 2014, 8 (4): 1567- 1572
43 徐锶瑶, 侯成龙, 王涛 季铵型变湿再生材料CO2吸附热量迁移研究 [J]. 能源工程, 2021, (1): 54- 62
XU Si-yao, HOU Cheng-long, WANG Tao The heat transfer of quaternary ammonium resin materials in the adsorption process[J]. Energy Engineering, 2021, (1): 54- 62
44 ZHAO R, LIU L, ZHAO L, et al Thermodynamic exploration of temperature vacuum swing adsorption for direct air capture of carbon dioxide in buildings[J]. Energy Conversion and Management, 2019, 183: 418- 426
doi: 10.1016/j.enconman.2019.01.009
45 ZHU X, GE T, YANG F, et al Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air [J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110651
doi: 10.1016/j.rser.2020.110651
46 RAHIMI, M, CATALINI G, PUCCINI M, et al Bench-scale demonstration of CO2 capture with an electrochemically driven proton concentration process [J]. RSC Advances, 2020, 10 (29): 16832- 16843
doi: 10.1039/D0RA02450C
47 STAMPI-BOMBELLI V, SPEK M, MAZZOTTI M Analysis of direct capture of CO2 from ambient air via steam-assisted temperature-vacuum swing adsorption [J]. Adsorption, 2020, 26 (7): 1183- 1197
doi: 10.1007/s10450-020-00249-w
48 SINHA A, DARUNTE L A, JONES C W, et al Systems design and economic analysis of direct air capture of CO2 through temperature vacuum swing adsorption using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF adsorbents [J]. Industrial and Engineering Chemistry Research, 2017, 56 (3): 750- 764
doi: 10.1021/acs.iecr.6b03887
49 CHAIKITTISILP W, KIM H-J, JONES C W Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air [J]. Energy and Fuels, 2011, 25 (11): 5528- 5537
doi: 10.1021/ef201224v
50 SAKWA-NOVAK M A, JONES C W Steam induced structural changes of a poly(ethylenimine) impregnated γ-alumina sorbent for CO2 extraction from ambient air [J]. ACS Applied Materials and Interfaces, 2014, 6 (12): 9245- 9255
doi: 10.1021/am501500q
51 WANG T, LACKNER K S, WRIGHT A Moisture swing sorbent for carbon dioxide capture from ambient air[J]. Environmental Science and Technology, 2011, 45 (15): 6670- 6675
doi: 10.1021/es201180v
52 QUINN R, APPLEBY J B, PEZ G P Salt hydrates: new reversible absorbents for carbon dioxide[J]. Journal of the American Chemical Society, 1995, 117 (1): 329- 335
doi: 10.1021/ja00106a035
53 WANG T, GE K, CHEN K, et al Theoretical studies on CO2 capture behavior of quaternary ammonium-based polymeric ionic liquids [J]. Physical Chemistry Chemical Physics, 2016, 18 (18): 13084- 13091
doi: 10.1039/C5CP07229H
54 WANG T, HOU C, GE K, et al Spontaneous cooling absorption of CO2 by a polymeric ionic liquid for direct air capture [J]. Journal of Physical Chemistry Letters, 2017, 8 (1): 3986- 3990
55 WANG T, LIU J, LACKNER K S, et al Characterization of kinetic limitations to atmospheric CO2 capture by solid sorbent [J]. Greenhouse Gases: Science and Technology, 2016, 6 (1): 138- 149
doi: 10.1002/ghg.1535
56 SHI X, LI Q, WANG T, et al Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air [J]. PLoS One, 2017, 12 (6): 1- 12
57 ARMSTRONG M, SHI X, SHAN B, et al Rapid CO2 capture from ambient air by sorbent-containing porous electrospun fibers made with the solvothermal polymer additive removal technique [J]. AIChE Journal, 2019, 65 (1): 214- 220
doi: 10.1002/aic.16418
58 WU D C, XU F, SUN B, et al Design and preparation of porous polymers[J]. Chemical Reviews, 2012, 112 (7): 3959- 4015
doi: 10.1021/cr200440z
59 WANG T, WANG X R, HOU C L, et al Quaternary functionalized mesoporous adsorbents for ultra-high kinetics of CO2 capture from air [J]. Scientific Reports, 2020, 10 (1): 21429
doi: 10.1038/s41598-020-77477-1
60 SONG J, LIU J, ZHAO W, et al Quaternized chitosan/PVA aerogels for reversible CO2 capture from ambient air [J]. Industrial and Engineering Chemistry Research, 2018, 57 (14): 4941- 4948
doi: 10.1021/acs.iecr.8b00064
61 HOU C L, WU Y S, WANG T, et al Preparation of quaternized bamboo cellulose and its implication in direct air capture of CO2[J]. Energy Fuels, 2019, 33 (3): 1745- 1752
doi: 10.1021/acs.energyfuels.8b02821
62 KEITH D W, HOLMES G, ST ANGELO D, et al A process for capturing CO2 from the atmosphere [J]. Joule, 2018, 2 (10): 1573- 1594
63 GEBALD C, WURZBACHER J A, TINGAUT P, et al Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air [J]. Environmental Science and Technology, 2011, 45 (20): 9101- 9108
doi: 10.1021/es202223p
64 VáZQUEZ F V, KOPONEN J, RUUSKANEN V, et al Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept[J]. Journal of CO2 Utilization , 2018, 28: 235- 246
doi: 10.1016/j.jcou.2018.09.026
65 SADIQ M M, BATTEN M P, MULET X, et al A pilot-scale demonstration of mobile direct air capture using metal-organic frameworks[J]. Advanced Sustainable Systems, 2020, 4 (12): 2000101
doi: 10.1002/adsu.202000101
66 WIJESIRI R P, KNOWLES G P, YEASMIN H, et al Desorption process for capturing CO2 from air with supported amine sorbent [J]. Industrial and Engineering Chemistry Research, 2019, 58 (34): 15606- 15618
doi: 10.1021/acs.iecr.9b03140
67 CHOI S, DRESE J, EISENBERGER P, et al. A new paradigm of anthropogenic CO2 reduction: adsorptive fixation of CO2 from the ambient air as a carbon negative technology [C]// 2009 AIChE Annual Meeting. Nashville: [s. n.], 2009: 385-390.
68 YU Q, BRILMAN W A radial flow contactor for ambient air CO2 capture [J]. Applied Sciences, 2020, 10 (3): 1080
doi: 10.3390/app10031080
69 HOU C L, WU Y S, JIAO Y Z, et al Integrated direct air capture and CO2 utilization of gas fertilizer based on moisture swing adsorption [J]. Journal of Zhejiang University: Science A, 2017, 18 (10): 819- 830
doi: 10.1631/jzus.A1700351
70 DAGGASH H A, PATZSCHKE C F, HEUBERGER C F, et al Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture[J]. Sustainable Energy and Fuels, 2018, 2 (6): 1153- 1169
doi: 10.1039/C8SE00061A
71 KREKEL D, SAMSUN R C, PETERS R, et al The separation of CO2 from ambient air: a techno-economic assessment [J]. Applied Energy, 2018, 218: 361- 381
doi: 10.1016/j.apenergy.2018.02.144
72 FASIHI M, EFIMOVA O, BREYER C Techno-economic assessment of CO2 direct air capture plants [J]. Journal of Cleaner Production, 2019, 224: 957- 980
doi: 10.1016/j.jclepro.2019.03.086
73 SAGUES W J, PARK S, JAMEEL H, et al Enhanced carbon dioxide removal from coupled direct air capture-bioenergy systems[J]. Sustainable Energy and Fuels, 2019, 3 (11): 3135- 3146
doi: 10.1039/C9SE00384C
74 WIJESIRI R P, KNOWLES G P, YEASMIN H, et al Technoeconomic evaluation of a process capturing CO2 directly from air [J]. Processes, 2019, 7 (8): 503
doi: 10.3390/pr7080503
75 ABANADES J C, CRIADO Y A, FERNáNDEZ J R An air CO2 capture system based on the passive carbonation of large Ca(OH)2 structures [J]. Sustainable Energy and Fuels, 2020, 4 (7): 3409- 3417
doi: 10.1039/D0SE00094A
76 MCQUEEN N, PSARRAS P, PILORGE H, et al Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the united states[J]. Environmental Science and Technology, 2020, 54 (12): 7542- 7551
doi: 10.1021/acs.est.0c00476
77 VAN DER GIESEN C, MEINRENKEN C J, KLEIJN R, et al A life cycle assessment case study of coal-fired electricity generation with humidity swing direct air capture of CO2 versus MEA-based postcombustion capture [J]. Environmental Science and Technology, 2017, 51 (2): 1024- 1034
78 GENG Y, LI C, CAO Y, et al Cost analysis of air capture driven by wind energy under different scenarios[J]. Journal of Modern Power Systems and Clean Energy, 2015, 4 (2): 275- 281
79 ZEMAN F Reducing the cost of Ca-based direct air capture of CO2[J]. Environmental Science and Technology, 2014, 48 (19): 11730- 11735
80 SOCOLOW R, DESMOND M, AINES R, et al. Direct air capture of CO2 with chemicals: a technology assessment for the aps panel on public affairs [R]. [S.l.]: American Physical Society, 2011.
81 KULKARNI A R, SHOLL D S Analysis of equilibrium-based TSA processes for direct capture of CO2 from air [J]. Industrial and Engineering Chemistry Research, 2012, 51 (25): 8631- 8645
doi: 10.1021/ie300691c
82 DEUTZ S, BARDOW A Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption[J]. Nature Energy, 2021, 6 (2): 203- 213
doi: 10.1038/s41560-020-00771-9
[1] 何璇,周启星. 基于壳聚糖气凝胶的新型石油吸附剂研究进展[J]. 浙江大学学报(工学版), 2021, 55(7): 1368-1380.