Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 616-625    DOI: 10.3785/j.issn.1008-973X.2025.03.019
机械工程     
碳纤维增强热塑性复合材料的变温单点飞切去除特性
鲍永杰1(),殷国运1,郑植1,杨宇星1,*(),陈晨2,程东1
1. 大连海事大学 轮机工程学院,辽宁 大连 116026
2. 大连海事大学 船舶与海洋工程学院,辽宁 大连 116026
Material removal characteristics of variable temperature single-abrasive scratch of carbon fiber reinforced thermoplastic composites
Yongjie BAO1(),Guoyun YIN1,Zhi ZHENG1,Yuxing YANG1,*(),Chen CHEN2,Dong CHENG1
1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China
2. Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China
 全文: PDF(9200 KB)   HTML
摘要:

基于切削温度模拟与单点飞切试验研究碳纤维增强热塑性复合材料(CFRTP)的力热变化规律及其去除特性,分析不同纤维角度和切削温度下CFRTP去除过程和损伤特点. 采用单点飞切试验开展CFRTP表面损伤特性研究,通过改变工艺参数、纤维方向和材料加热温度,分析切削力热的变化趋势以及温度对材料去除的影响. 当飞切速度从3 m/s增大到7 m/s时,切向力和法向力分别增大130.60%和147.80%;当飞切深度从0.05 mm增加到0.10 mm时,切向力和法向力分别增大72.44%和58.13%;当纤维角度从0°增大到30°、45°、60°、90°时,切向力分别增大12.50%、37.50%、75.00%、137.50%. CFRTP在20.0 ℃下以剪切破坏为主,在高温下以拉伸破坏为主且易出现分层和纤维拉拔现象. 随切削温度升高,热塑性树脂软化,CFRTP层间强度和承载性能降低,切削力下降,有效切断的纤维数量降低,加工表面质量变差.

关键词: 碳纤维增强热塑性复合材料(CFRTP)单点飞切试验切削温度模拟去除特性金刚石磨粒    
Abstract:

Based on the cutting temperature simulation and the single-abrasive scratch test, the cutting force variation and heat variation laws of carbon fiber reinforced thermoplastic composites (CFRTP) as well as its removal characteristics were studied, and the removal process and the damage characteristics of CFRTP with different fiber angles and cutting temperatures were analyzed. For investigating the surface damage characteristics of CFRTP, single-abrasive scratch tests were conducted, and the variation trends of cutting force and heat, as well as the effect of temperature on material removal was analyzed, by changing the cutting process parameters, fiber directions and material heating temperatures. As the single-abrasive scratch speed increased from 3 m/s to 7 m/s, the tangential force and normal force increased by 130.60% and 147.80%, respectively; as the single-abrasive scratch depth increased from 0.05 mm to 0.10 mm, the tangential force and normal force increased by 72.44% and 58.13%, respectively; as the fiber angle increased from 0° to 30°, 45°, 60°, and 90°, the tangential force increased by 12.50%, 37.50%, 75.00%, and 137.50%, respectively. CFRTP was primarily characterized by the shear damage at 20.0 ℃, while the tensile damage dominated at high temperatures, accompanied by the delamination and fiber pull-out phenomena. As the cutting temperature increased, the thermoplastic resin softened, which reduced the interlaminar strength and the bearing performance of CFRTP, leading to a decrease in cutting force and a reduction in the number of effectively severed fibers so that a deterioration in the machining surface quality.

Key words: carbon fiber reinforced thermoplastic composite (CFRTP)    single-abrasive scratch test    cutting temperature simulation    removal characteristic    diamond abrasive particle
收稿日期: 2023-12-29 出版日期: 2025-03-10
CLC:  TB 332  
基金资助: 国家自然科学基金资助项目(52301359,U21A20165,52442104);大连市科技创新基金资助项目(2022JJ12GX033);辽宁省应用基础研究计划资助项目(2022JH2/101300221);大连海事大学科研创新团队资助项目(3132023513).
通讯作者: 杨宇星     E-mail: yongjie@dlmu.edu.cn;yangyuxing@dlmu.edu.cn
作者简介: 鲍永杰(1980—),男,教授,从事复合材料制造技术研究. orcid.org/0000-0002-8353-3157. E-mail:yongjie@dlmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
鲍永杰
殷国运
郑植
杨宇星
陈晨
程东

引用本文:

鲍永杰,殷国运,郑植,杨宇星,陈晨,程东. 碳纤维增强热塑性复合材料的变温单点飞切去除特性[J]. 浙江大学学报(工学版), 2025, 59(3): 616-625.

Yongjie BAO,Guoyun YIN,Zhi ZHENG,Yuxing YANG,Chen CHEN,Dong CHENG. Material removal characteristics of variable temperature single-abrasive scratch of carbon fiber reinforced thermoplastic composites. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 616-625.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.019        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/616

参数数值参数数值
密度/ (kg·m?3 )1.34弹性模量/GPa26.5
抗拉强度/MPa300树脂玻璃化温度/℃65.0
表 1  T700/PA6碳纤维增强热塑性复合材料力学性能
图 1  单点飞切试验工件材料
图 2  单点飞切试验装置
参数数值参数数值
辐射率0.89外部光学温度/℃20.0
反射温度/℃15.0相对湿度/%55
距离/m1
表 2  热成像仪设定参数
θ/ρ/(kg·m?3cp/(kJ·kg?1·K?1λ/(102 W·m?1·K?1ν/(106 m2·s?1Pr
20.01.2051.0052.5915.060.703
50.01.0931.0052.8317.950.698
85.00.9861.0093.0921.600.691
110.00.9221.0093.2824.290.687
表 3  热流体的物理性质
图 3  单点飞切试验方法
图 4  单点飞切力的近似处理
参数数值
ap/mm0.05、0.10
r/mm162
vs/(m·s?1)3、4、5、6、7
Δt /s0.10~0.15
vw/ (mm·min?1)100
表 4  单点飞切试验参数
图 5  切削过程中力的变化曲线
图 6  切削过程中温度的变化曲线
图 7  不同飞切速度的切削力折线图
图 8  不同纤维角度的切削力折线图
图 9  不同飞切深度的单点飞切力
图 10  不同环境温度和不同纤维角度下的切削力变化
图 11  20.0 ℃下纤维角度为0°时的单点飞切表面形貌
图 12  110.0 ℃下纤维角度为0°时的单点飞切表面形貌
图 13  20.0 ℃下纤维角度为45°时的单点飞切表面形貌
图 14  110.0 ℃下纤维角度为45°时的单点飞切表面形貌
图 15  20.0 ℃下纤维角度为90°时的单点飞切表面形貌
图 16  110.0 ℃下纤维角度为90°时的飞切表面形貌
1 NING H, LU N, HASSEN A A, et al A review of long fibre thermoplastic (LFT) composites[J]. International Materials Reviews, 2020, 65 (3): 164- 188
doi: 10.1080/09506608.2019.1585004
2 YAO S S, JIN F L, RHEE K Y, et al Recent advances in carbon-fiber-reinforced thermoplastic composites: a review[J]. Composites Part B: Engineering, 2018, 142: 241- 250
doi: 10.1016/j.compositesb.2017.12.007
3 高士杰. PEEK热塑性复合材料纤维铺放工艺研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018.
GAO Shijie. Study on the process of PEEK thermoplastic composites automated fiber placement [D]. Harbin: Harbin Institute of Technology, 2018.
4 蒋维. 连续碳纤维增强热塑性复合材料制备与性能研究[D]. 武汉: 华中科技大学, 2018.
JIANG Wei. Preparation and properties of continuous carbon fiber reinforced thermoplastic composites [D]. Wuhan: Huazhong University of Science and Technology, 2018.
5 FERREIRA BATISTA M, BASSO I, DE ASSIS TOTI F, et al Cryogenic drilling of carbon fibre reinforced thermoplastic and thermoset polymers[J]. Composite Structures, 2020, 251: 112625
doi: 10.1016/j.compstruct.2020.112625
6 CHEGDANI F, EL MANSORI M Mechanics of material removal when cutting natural fiber reinforced thermoplastic composites[J]. Polymer Testing, 2018, 67: 275- 283
doi: 10.1016/j.polymertesting.2018.03.016
7 SAMBRUNO A, BANOÑ F, SALGUERO J, et al Study of milling of low thickness thermoplastic carbon fiber composites in function of tool geometry and cutting conditions[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114 (7): 2515- 2526
8 BAÑON F, SAMBRUNO A, BATISTA M, et al Study of the surface quality of carbon fiber–reinforced thermoplastic matrix composite (CFRTP) machined by abrasive water jet (AWJM)[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107 (7): 3299- 3313
9 MEINHARD D, HAEGER A, KNOBLAUCH V Drilling induced defects on carbon fiber-reinforced thermoplastic polyamide and their effect on mechanical properties[J]. Composite Structures, 2021, 256: 113138
10 DEBNATH K, SINGH I, DVIVEDI A Drilling Characteristics of sisal fiber-reinforced epoxy and polypropylene composites[J]. Materials and Manufacturing Processes, 2014, 29 (11/12): 1401- 1409
11 张红哲, 郑植, 殷国运, 等 碳纤维增强热塑性复合材料螺旋铣磨制孔损伤研究[J]. 表面技术, 2023, 52 (2): 25- 34
ZHANG Hongzhe, ZHENG Zhi, YIN Guoyun, et al Hole damage of carbon fiber reinforced thermoplastic composites using helical milling[J]. Surface Technology, 2023, 52 (2): 25- 34
12 WANG F, JIN X, WANG X, et al Numerical investigation on the influences of processing conditions on damage in the CFRTP cutting using a novel elastic–plastic damage model[J]. Applied Composite Materials, 2022, 29 (5): 2063- 2094
doi: 10.1007/s10443-022-10041-4
13 XU J, HUANG X, DAVIM J P, et al On the machining behavior of carbon fiber reinforced polyimide and PEEK thermoplastic composites[J]. Polymer Composites, 2020, 41 (9): 3649- 3663
doi: 10.1002/pc.25663
14 HINTZE W, SCHÜTTE C, STEINBACH S. Influence of the fiber cutting angle on work piece temperature in drilling of unidirectional CFRP [M]// New production technologies in aerospace industry . Cham: Springer, 2013.
15 GE J, TAN W, AHMAD S, et al. Temperature-dependent cutting physics in orthogonal cutting of carbon fibre reinforced thermoplastic (CFRTP) composite[J]. Composites Part A: Applied Science and Manufacturing , 2024, 176: 107820.
16 DAVIES M, UEDA T, M'SAOUBI R, et al On the measurement of temperature in material removal processes[J]. CIRP Annals-Manufacturing Technology, 2007, 56 (2): 581- 604
doi: 10.1016/j.cirp.2007.10.009
17 MERINO-PÉREZ J L, ROYER R, AYVAR-SOBERANIS S, et al On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part I: workpiece constituents, cutting speed and heat dissipation[J]. Composite Structures, 2015, 123: 161- 168
doi: 10.1016/j.compstruct.2014.12.033
18 KITZIG-FRANK H, TAWAKOLI T, AZARHOUSHANG B Material removal mechanism in ultrasonic-assisted grinding of Al2O3 by single-grain scratch test[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91 (9): 2949- 2962
doi: 10.1007/s00170-016-9967-4
19 JIAO F, ZHAO B Influence of ultrasonic assistance on material removal mechanism of hard and brittle materials based on single-point scratch[J]. Key Engineering Materials, 2011, 487: 413- 418
doi: 10.4028/www.scientific.net/KEM.487.413
20 CAO J, WU Y, LU D, et al Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool[J]. International Journal of Machine Tools and Manufacture, 2014, 79: 49- 61
doi: 10.1016/j.ijmachtools.2014.02.002
[1] 宋晨,马玉钦,阮鸥,徐津,刘欣然,刘思濛. 超声分散时间对GO-CF增强SMPC形状记忆性能的影响[J]. 浙江大学学报(工学版), 2024, 58(8): 1596-1603.
[2] 宋小文,杜嘉成,费少华,丁会明,王金良,高宇. 微细金属Z-pin对复合材料开孔板压缩性能的影响[J]. 浙江大学学报(工学版), 2024, 58(1): 197-206.
[3] 费少华,丁会明,汪海晋,李江雄. 基于超声引导的微细Z-pin植入系统[J]. 浙江大学学报(工学版), 2023, 57(4): 657-665.
[4] 李明厚,SELYUTINA Nina ,SMIRNOV Ivan ,张祥,李贝贝,刘元珍,张玉. 基于热裂纹演化的玻化微珠保温混凝土渗透性能分析[J]. 浙江大学学报(工学版), 2023, 57(2): 367-379.
[5] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[6] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960.
[7] 周二振,应济. 碳纳米管阵列/环氧树脂的导热导电性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1671-1676.
[8] 刘肃肃,余音. 复材非线性及渐进损伤的态型近场动力学模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 993-1000.
[9] 倪楠楠, 温月芳, 贺德龙, 王程成, 益小苏, 许亚洪. 功能无纺布插层复合材料的结构阻尼性能[J]. 浙江大学学报(工学版), 2016, 50(2): 353-359.
[10] 易琳, 王班, 郭吉丰. Kevlar绳索非对称迟滞模型及参数识别[J]. 浙江大学学报(工学版), 2015, 49(7): 1376-1381.
[11] 易琳,王班,郭吉丰. 绳索非对称迟滞模型及参数识别[J]. 浙江大学学报(工学版), 2015, 49(4): 3-4.
[12] 陈越超, 周晓军, 杨辰龙, 李钊. L型CFRP构件R区微观形态及孔隙特征[J]. 浙江大学学报(工学版), 2014, 48(10): 1775-1880.
[13] 陈雪刚, 王丽丹, 吕双双, 叶瑛. 季铵盐改性蒙脱石的超结构及其抗菌性能[J]. J4, 2010, 44(9): 1831-1837.