Please wait a minute...
浙江大学学报(工学版)
机械工程     
碳纳米管阵列/环氧树脂的导热导电性能
周二振,应济
浙江大学 机械工程学院,浙江 杭州 310027
Thermal and electrical conductivity of carbon nanotube arrays/epoxy
ZHOU Er zhen, YING Ji
Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1429 KB)   HTML
摘要:

采用碳纳米管阵列(CNTA)与环氧树脂(Epoxy)溶液共混制备CNTA/Epoxy复合材料.将CNTA分散于Epoxy溶液中,在60 ℃的温度条件下固化4 h,将固化后的Epoxy浸润在CNTA薄膜中;CNTA薄膜中的碳纳米管仍然能保持整齐排列,以此提高复合材料沿轴线方向上的热导率.其中,轴线方向为碳纳米管的管轴方向.实验发现,CNTA/Epoxy复合材料的热导率在90 ℃时提高到2.24 W/(m·K),相当于纯Epoxy热导率的10倍左右.复合材料的电导率仍保持在一个相对较低的值,为10-8 S/cm.CNTA相对于大多数的纳米填料能够显著增强复合材料的热导率,同时能使复合材料保持一定的绝缘性,满足这种热界面材料在电子封装上的应用条件.

Abstract:

Carbon nanotube array (CNTA)/Epoxy composites were prepared by blending epoxy resin solution with CNTA. The carbon nanotube arrays were dissolved and dispersed in Epoxy solution, and the composites were cured at 60 oC for 4 h. After curing, the Epoxy film was infiltrated in the CNTA film. The carbon nanotubes in the CNTA film can still be kept in a neat arrangement. On this account, the thermal conductivity of the composites along the axis was improved. The direction of the axis was the axial direction of the carbon nanotubes. It is found that the thermal conductivity of the CNTA/Epoxy composites increase to 2.24 W/(m·K), about 10 times that of neat epoxy resin. The electrical conductivity of composite materials is still maintained at a relatively low value of 10-8 S/cm. To sum up, compared to addition of random dispersed CNTs or other nanofillers, the CNTA can enhance the thermal conductivity of the composites markedly. Meanwhile, the electrical conductivity remains in a relative low value, which is beneficial for  application in electronic packaging industry.

出版日期: 2016-09-22
:  TB 332  
基金资助:

 浙江省自然科学基金资助项目(Z12E060008).

通讯作者: 应济,男,副教授. ORCID: 0000-0003-0343-4130.     E-mail: yingji_zju@zju.edu.cn
作者简介: 周二振(1987-),男,博士生,从事碳纳米管热界面材料及石墨烯屏蔽材料研究. ORCID: 0000-0003-0581-7311. E-mail: zhouerzhen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

周二振,应济. 碳纳米管阵列/环氧树脂的导热导电性能[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.09.05.

ZHOU Er zhen, YING Ji. Thermal and electrical conductivity of carbon nanotube arrays/epoxy. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.09.05.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.09.05        http://www.zjujournals.com/eng/CN/Y2016/V50/I9/1671

[1] SAVAS B,YOUNG K K, DAVID T. Unusually high thermal conductivity of carbon nanotubes [J].Physical Review Letters, 2000, 5(15): 4613-4616.
[2] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multi walled nanotubes [J]. Physical Review Letters, 2001, 11(19): 14.
[3] FUJII M, ZHANG X, XIE H, et al. Measuring the thermal conductivity of a single carbon nanotube [J]. Physical Review Letters, 2005, 8(5): 14.
[4] GOJNY F H, WICHMANN M H G, FIEDLER B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites [J]. Polymer, 2006, 2(2): 2036-2045.
[5] YANG K, GU M, GUO Y P, et al. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites [J]. Carbon, 2009, 3(6): 1723-1737.
[6] ALEMN B, REGUERO V, MAS B, et al. Strong carbon nanotube fibers by drawing inspiration from polymer fiber spinning [J]. Acs Nano, 2015, 7(15):7392-7398.
[7] LUYT A S, MOLEFI J A, KRUMP H. Thermal, mechanical and electrical properties of copper powder filled lowdensity and linear lowdensity polyethylene composites[J]. Polymer Degradation and Stability, 2005, 11(2): 1630-1636.
[8] HAGGENMUELLER R, GUTHY C, LUKES J R, et al. Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity [J]. Macromolecules, 2007, 1(31): 2417-2421.
[9] JOHN L R. Multiwalled carbon nanotube films: fabrication techniques and applications [D]. Nashville: Vanderbilt University, 2012.
[10] FARID E, KAMADAB K, OHNABEC H. Electrical properties and stability of epoxy reinforced carbon black composites [J]. Materials Letters, 2001,11(19):241-251.
[11] GARDEA F, LAGOUDAS D C. Characterization of electrical and thermal properties of carbon nanotube/epoxy composites [J]. Composites Part B, 2014, 8(20): 611-620.
[12] AAL N A, ELTANTAWY F, ALHAJRY A, et al. New antistatic charge and electromagnetic shielding effectiveness from conductive epoxy resin/plasticized carbon black composites [J]. Polymer Composites, 2008,10(29): 125-132.
[13] YAMAMOTO N, VILLORIA R G D, WARDLE B L. Electrical and thermal property enhancement of fiberreinforced polymer laminate composites through controlled implementation of multiwalled carbon nanotubes [J]. Composites Science and Technology, 2012, 9(23): 2009-2015.
[14] ZHANG K, ZHANG Y, WANG S. Effectively decoupling electrical and thermal conductivity of polymer composites [J]. Carbon, 2013, 8(7): 105-111.
[15] 余晖. 热界面材料的制备及其导热性能的研究[D]. 北京:清华大学,2011: 11.
YU Hui. Synthesis and heat conduction properties of thermal interface materials [D]. Beijing: Tsinghua University, 2011: 11.
[16] 郭秀生,于德梅,李琴,等. 环氧树脂/改性碳纳米管复合材料的导热性能[J].中国塑料,2015,29(1): 23-28.
GUO Xiusheng, YU Demei,LI Qin,et al. Thermal conductivity of epoxy/modified multiwall carbon nanotube nanocomposites [J].China Plastics, 2015, 29(1):23-28.
[17] 李庆威. 碳纳米管热传导研究[D]. 北京:清华大学,2014: 4.
LI Qingwei. Studies on thermal conductance of carbon nanotubes [D]. Beijing: Tsinghua University, 2014: 4.
[18] 冯雅. 碳纳米管及其与半导体材料界面热传导的分子动力学研究[D]. 合肥:中国科学技术大学. 2014: 5.
FENG Ya. Molecular dynamics simulations of heat transfer in carbon nanotube and its interface with semiconducting materials [D]. Hefei: University of Chinese Academy of Sciences. 2014: 5.
[19] 赵瑾朝. 聚氨酯/表面修饰碳纳米管复合材料的制备与导热、电绝缘行为[D]. 武汉:华中科技大学.2011:5.
ZHAO Jinzhao. A dissertation submitted in full fulfillment of the requirements for the degree of doctor of philosophy in engineering [D]. Wuhan: Huazhong University of Science and Technology. 2011: 5.
[20] 肖玉鳞,甘曦梓,曾轶,等. 碳纳米管填料对相变储能式热沉性能的影响[J]. 浙江大学学报:工学版,2014, 48(10): 1732-1738.
XIAO Yulin, GAN Xizi, ZENG Yi, et al. Effects of carbon nanotube fillers on performance of phase change energy storagebased heat sinks [J]. Journal of Zhejiang University:Engineering Science, 2014, 48(10): 1732-1738.
[21] TONG T, ZHAO Y, DELZEIT L, et al. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials [J]. IEEE Transactions on Components and Packaging Technologies, 2007, 11(30): 92-100.
[22] XU J, FISHER T S. Enhanced thermal contact conductance using carbon nanotube array interfaces [J]. IEEE Transactions on Components and Packaging Technologies, 2006, 11(29):261-267.
[23] LIU H K, ZENG H Z, PAN T S, et al. Pressure dependency of thermal boundary conductance of carbon nanotube/silicon interface: a molecular dynamics study [J]. Journal of Applied Physics, 2012, 112(5): 15.
[24] ABDALLA M, DEAN D, THEODORE M, et al. Magnetically processed carbon nanotube/epoxy nanocomposites morphology, thermal, and mechanical properties [J]. Polymer, 2009, 6(6):1614-1620.
[25] PARK J G, CHENG Q F, LU J, et al. Thermal conductivity of MWCNT/epoxy composites The effects of length, alignment and functionalizetion [J]. Carbon, 2012, 1(4): 2083-2090.
 [26] CUI W, DU F P, ZHAO J C, et al. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbonnanotubes\[J\]. Carbon, 2011,9(23): 495500.
 [27] 崔伟.碳纳米管/环氧树脂复合材料的界面结构与性能\[D\].武汉:华中科技大学,2011: 5.
CUI Wei. Interfacial structureproperties relationship of functionalized carbon nanotube/epoxy composites \[D\]. Wuhan: Huazhong University of Science and Technology, 2011: 5.
 [28] YU W Q, FU J F, CHEN L Y, et al. Enhanced thermal conductive property of epoxy composites by low mass fraction of organicinorganic multilayer covalently grafted carbon nanotubes \[J\]. Composites Science and Technology, 2016,3(23): 90-99.

[1] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960.
[2] 刘肃肃,余音. 复材非线性及渐进损伤的态型近场动力学模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 993-1000.
[3] 倪楠楠, 温月芳, 贺德龙, 王程成, 益小苏, 许亚洪. 功能无纺布插层复合材料的结构阻尼性能[J]. 浙江大学学报(工学版), 2016, 50(2): 353-359.
[4] 易琳, 王班, 郭吉丰. Kevlar绳索非对称迟滞模型及参数识别[J]. 浙江大学学报(工学版), 2015, 49(7): 1376-1381.
[5] 易琳,王班,郭吉丰. 绳索非对称迟滞模型及参数识别[J]. 浙江大学学报(工学版), 2015, 49(4): 3-4.
[6] 陈越超, 周晓军, 杨辰龙, 李钊. L型CFRP构件R区微观形态及孔隙特征[J]. 浙江大学学报(工学版), 2014, 48(10): 1775-1880.
[7] 陈雪刚, 王丽丹, 吕双双, 叶瑛. 季铵盐改性蒙脱石的超结构及其抗菌性能[J]. J4, 2010, 44(9): 1831-1837.