[1] SAVAS B,YOUNG K K, DAVID T. Unusually high thermal conductivity of carbon nanotubes [J].Physical Review Letters, 2000, 5(15): 4613-4616.
[2] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multi walled nanotubes [J]. Physical Review Letters, 2001, 11(19): 14.
[3] FUJII M, ZHANG X, XIE H, et al. Measuring the thermal conductivity of a single carbon nanotube [J]. Physical Review Letters, 2005, 8(5): 14.
[4] GOJNY F H, WICHMANN M H G, FIEDLER B, et al. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites [J]. Polymer, 2006, 2(2): 2036-2045.
[5] YANG K, GU M, GUO Y P, et al. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites [J]. Carbon, 2009, 3(6): 1723-1737.
[6] ALEMN B, REGUERO V, MAS B, et al. Strong carbon nanotube fibers by drawing inspiration from polymer fiber spinning [J]. Acs Nano, 2015, 7(15):7392-7398.
[7] LUYT A S, MOLEFI J A, KRUMP H. Thermal, mechanical and electrical properties of copper powder filled lowdensity and linear lowdensity polyethylene composites[J]. Polymer Degradation and Stability, 2005, 11(2): 1630-1636.
[8] HAGGENMUELLER R, GUTHY C, LUKES J R, et al. Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity [J]. Macromolecules, 2007, 1(31): 2417-2421.
[9] JOHN L R. Multiwalled carbon nanotube films: fabrication techniques and applications [D]. Nashville: Vanderbilt University, 2012.
[10] FARID E, KAMADAB K, OHNABEC H. Electrical properties and stability of epoxy reinforced carbon black composites [J]. Materials Letters, 2001,11(19):241-251.
[11] GARDEA F, LAGOUDAS D C. Characterization of electrical and thermal properties of carbon nanotube/epoxy composites [J]. Composites Part B, 2014, 8(20): 611-620.
[12] AAL N A, ELTANTAWY F, ALHAJRY A, et al. New antistatic charge and electromagnetic shielding effectiveness from conductive epoxy resin/plasticized carbon black composites [J]. Polymer Composites, 2008,10(29): 125-132.
[13] YAMAMOTO N, VILLORIA R G D, WARDLE B L. Electrical and thermal property enhancement of fiberreinforced polymer laminate composites through controlled implementation of multiwalled carbon nanotubes [J]. Composites Science and Technology, 2012, 9(23): 2009-2015.
[14] ZHANG K, ZHANG Y, WANG S. Effectively decoupling electrical and thermal conductivity of polymer composites [J]. Carbon, 2013, 8(7): 105-111.
[15] 余晖. 热界面材料的制备及其导热性能的研究[D]. 北京:清华大学,2011: 11.
YU Hui. Synthesis and heat conduction properties of thermal interface materials [D]. Beijing: Tsinghua University, 2011: 11.
[16] 郭秀生,于德梅,李琴,等. 环氧树脂/改性碳纳米管复合材料的导热性能[J].中国塑料,2015,29(1): 23-28.
GUO Xiusheng, YU Demei,LI Qin,et al. Thermal conductivity of epoxy/modified multiwall carbon nanotube nanocomposites [J].China Plastics, 2015, 29(1):23-28.
[17] 李庆威. 碳纳米管热传导研究[D]. 北京:清华大学,2014: 4.
LI Qingwei. Studies on thermal conductance of carbon nanotubes [D]. Beijing: Tsinghua University, 2014: 4.
[18] 冯雅. 碳纳米管及其与半导体材料界面热传导的分子动力学研究[D]. 合肥:中国科学技术大学. 2014: 5.
FENG Ya. Molecular dynamics simulations of heat transfer in carbon nanotube and its interface with semiconducting materials [D]. Hefei: University of Chinese Academy of Sciences. 2014: 5.
[19] 赵瑾朝. 聚氨酯/表面修饰碳纳米管复合材料的制备与导热、电绝缘行为[D]. 武汉:华中科技大学.2011:5.
ZHAO Jinzhao. A dissertation submitted in full fulfillment of the requirements for the degree of doctor of philosophy in engineering [D]. Wuhan: Huazhong University of Science and Technology. 2011: 5.
[20] 肖玉鳞,甘曦梓,曾轶,等. 碳纳米管填料对相变储能式热沉性能的影响[J]. 浙江大学学报:工学版,2014, 48(10): 1732-1738.
XIAO Yulin, GAN Xizi, ZENG Yi, et al. Effects of carbon nanotube fillers on performance of phase change energy storagebased heat sinks [J]. Journal of Zhejiang University:Engineering Science, 2014, 48(10): 1732-1738.
[21] TONG T, ZHAO Y, DELZEIT L, et al. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials [J]. IEEE Transactions on Components and Packaging Technologies, 2007, 11(30): 92-100.
[22] XU J, FISHER T S. Enhanced thermal contact conductance using carbon nanotube array interfaces [J]. IEEE Transactions on Components and Packaging Technologies, 2006, 11(29):261-267.
[23] LIU H K, ZENG H Z, PAN T S, et al. Pressure dependency of thermal boundary conductance of carbon nanotube/silicon interface: a molecular dynamics study [J]. Journal of Applied Physics, 2012, 112(5): 15.
[24] ABDALLA M, DEAN D, THEODORE M, et al. Magnetically processed carbon nanotube/epoxy nanocomposites morphology, thermal, and mechanical properties [J]. Polymer, 2009, 6(6):1614-1620.
[25] PARK J G, CHENG Q F, LU J, et al. Thermal conductivity of MWCNT/epoxy composites The effects of length, alignment and functionalizetion [J]. Carbon, 2012, 1(4): 2083-2090.
[26] CUI W, DU F P, ZHAO J C, et al. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbonnanotubes\[J\]. Carbon, 2011,9(23): 495500.
[27] 崔伟.碳纳米管/环氧树脂复合材料的界面结构与性能\[D\].武汉:华中科技大学,2011: 5.
CUI Wei. Interfacial structureproperties relationship of functionalized carbon nanotube/epoxy composites \[D\]. Wuhan: Huazhong University of Science and Technology, 2011: 5.
[28] YU W Q, FU J F, CHEN L Y, et al. Enhanced thermal conductive property of epoxy composites by low mass fraction of organicinorganic multilayer covalently grafted carbon nanotubes \[J\]. Composites Science and Technology, 2016,3(23): 90-99. |