Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (1): 84-91    DOI: 10.3785/j.issn.1008-973X.2022.01.009
土木工程、水利工程     
UHTCC与钢材界面的剪切型断裂试验研究
李庆华(),暴宁,王国仲
浙江大学 建筑工程学院, 浙江 杭州 310058
Experimental study on interface shear fracture of UHTCC and steel
Qing-hua LI(),Ning BAO,Guo-zhong WANG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1166 KB)   HTML
摘要:

为了将超高韧性水泥基复合材料(UHTCC)应用于大跨径钢箱梁桥,研究双材料界面的力学性能. 采用无切口单边对称加载复合试件,研究UHTCC与钢材界面剪切型裂缝扩展过程. 利用数字图像相关法(DIC),验证该方法用于定量测定双材料界面剪切型断裂韧度的可行性,探究不同界面处理方式对复合试件界面剪切型断裂韧度的影响. 试验结果表明,采用UHTCC-钢材无切口单边对称加载复合试件,结合DIC技术可以实现界面纯剪切型断裂韧度的定量测试;不同界面处理方式对UHTCC与钢材界面剪切型断裂韧度的影响均较小;UHTCC与钢材界面具有较高的剪切断裂韧度,抗剪切性能良好.

关键词: 超高韧性水泥基复合材料数字图像相关法界面剪切型断裂韧度    
Abstract:

The mechanical properties of bimaterial interface were analyzed in order to apply ultra-high toughness cement-based composites (UHTCC) to long-span steel box girder bridges. The propagation process of shear crack at the interface between UHTCC and steel was analyzed by using non-notched unilateral symmetrical loading composite specimens. The feasibility of the method for quantitative determination of interfacial shear fracture toughness of bimaterials was verified by digital image correlation (DIC) method. The effects of different interfacial treatment methods on the interfacial shear fracture toughness of composite specimens were analyzed. The test results show that the quantitative test of pure shear fracture toughness of interface can be realized by using UHTCC- steel without notch unilateral symmetrical loading composite specimen combined with DIC technology. Different interface treatment methods have little effect on the shear fracture toughness of the interface between UHTCC and steel. The interface between UHTCC and steel has high shear fracture toughness and good shear resistance.

Key words: ultra-high toughness cementitious composites    digital image correlation method    interface    shear fracture toughness
收稿日期: 2021-03-12 出版日期: 2022-01-05
CLC:  TU 502  
基金资助: 国家自然科学基金资助项目(5197080976)
作者简介: 李庆华(1981—),女,教授,从事新材料结构、防护力学的研究. orcid.org/0000-0003-2694-1936. E-mail: liqinghua@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李庆华
暴宁
王国仲

引用本文:

李庆华,暴宁,王国仲. UHTCC与钢材界面的剪切型断裂试验研究[J]. 浙江大学学报(工学版), 2022, 56(1): 84-91.

Qing-hua LI,Ning BAO,Guo-zhong WANG. Experimental study on interface shear fracture of UHTCC and steel. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 84-91.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.01.009        https://www.zjujournals.com/eng/CN/Y2022/V56/I1/84

图 1  UHTCC-钢材无切口单边对称加载复合试件
图 2  断裂混合度的K空间夹角定义
钢材种类 fy/MPa fu /MPa Es /GPa μs
Q345qD 345 504 206 0.3
表 1  Q345qD钢材力学性能实测指标
纤维种类 lf/mm df/μm ff /MPa lfe /% Ef /GPa ρf /(g·cm-3)
K-II REC15 12 39 1620 7 42.8 1.3
表 2  PVA纤维性能参数
材料 Esu /GPa μU fcu /MPa ftc /MPa
UHTCC 17.7 0.19 50.8 4.85
表 3  UHTCC力学性能实测指标
组别 界面处理方式 试件个数
A 不处理 9
B 丙烯酸黏结剂 9
C 丙烯酸黏结剂+石英砂 9
表 4  试件分组情况
图 3  UHTCC-钢复合试件加载装置及测量方案示意图
图 4  部分试件的荷载-位移曲线
图 5  试件B2主应变云图变化示意图
图 6  UHTCC-钢材界面的破坏特征
图 7  试件的计算区域
图 8  每组代表性试件的滑移位移曲线
图 9  每组代表性试件的荷载-时间曲线
试件 Pc/kN σc /MPa KIIc/ (MPa·m1/2 |ψ|/(°)
A1 489.51 48.95 6.89 83.16
A2 457.93 45.79 6.44 86.22
A3 376.91 37.69 5.30 85.95
A4 471.98 47.20 6.64 82.19
A6 458.32 45.83 6.45 82.86
A7 418.81 41.88 5.89 83.68
A9 350.57 35.06 4.93 85.80
B1 558.38 55.84 7.86 84.17
B2 460.62 46.06 6.48 84.57
B4 367.78 36.78 5.18 83.89
B5 374.74 37.47 5.27 83.08
B6 444.13 44.41 6.25 81.76
B7 335.10 33.51 4.72 84.71
B8 351.28 35.13 4.94 85.01
C1 385.09 38.51 5.42 83.13
C2 525.86 52.59 7.40 84.08
C4 392.78 39.28 5.53 82.16
C5 489.59 48.96 6.89 81.91
C8 319.30 31.93 4.49 83.61
C9 358.42 35.84 5.04 85.75
表 5  试件编号及断裂参数
图 10  各组试件的II型断裂韧度
1 李智, 钱振东 典型钢桥面铺装结构的病害分类分析[J]. 交通运输工程与信息学报, 2006, 4 (2): 110- 115
LI Zhi, QIAN Zhen-dong Disease analysis and classification of the representative pavements on steel deck[J]. Journal of Transportation Engineering and Information, 2006, 4 (2): 110- 115
doi: 10.3969/j.issn.1672-4747.2006.02.021
2 徐世烺, 李贺东 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41 (6): 45- 60
XU Shi-liang, LI He-dong A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41 (6): 45- 60
doi: 10.3321/j.issn:1000-131X.2008.06.008
3 WANG S, WU C, LI V C Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98 (6): 483- 492
4 徐世烺, 李庆华. 超高韧性水泥基复合材料在高性能建筑结构中的基本应用[M]. 北京: 科学出版社, 2010 .
5 LI Qing-hua, HUANG Bo-tao, XU Shi-lang, et al Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility[J]. Cement and Concrete Research, 2016, 90: 174- 183
doi: 10.1016/j.cemconres.2016.09.019
6 HUANG Bo-tao, LI Qing-hua, XU Shi-lang, et al Fatigue deformation behavior and fiber failure mechanism of ultra-high toughness cementitious composites in compression[J]. Materials and Design, 2018, 157 (11): 457- 468
7 李庆华, 黄博滔, 周宝民, 等 超高韧性水泥基复合材料单轴压缩疲劳性能研究[J]. 建筑结构学报, 2016, 37 (1): 135- 142
LI Qing-hua, HUANG Bo-tao, ZHOU Bao-min, et al Study on compression fatigue properties of ultra high toughness cementitious composites[J]. Journal of Building Structures, 2016, 37 (1): 135- 142
8 余江滔, 许万里, 张远淼 ECC-混凝土黏结界面断裂试验研究[J]. 建筑材料学报, 2015, 18 (6): 958- 963
YU Jiang-tao, XU Wan-li, ZHANG Yuan-miao Experiment study on fracture property of ECC-concrete interface[J]. Journal of Building Materials, 2015, 18 (6): 958- 963
doi: 10.3969/j.issn.1007-9629.2015.06.008
9 崔涛, 何浩祥, 闫维明 ECC与既有混凝土结合面的抗剪性能[J]. 建筑材料学报, 2020, 23 (5): 42- 49
CUI Tao, HE Hao-xiang, YAN Wei-ming Shear resistance property of ECC-existing concrete interface[J]. Journal of Building Materials, 2020, 23 (5): 42- 49
10 丁祖德, 文锦诚, 李晓琴 PVA-ECC与既有混凝土黏结面抗渗及劈裂抗拉试验[J]. 建筑材料学报, 2019, (3): 356- 362
DING Zu-de, WEN Jin-cheng, LI Xiao-qin Impermeability and splitting tensile tests of PVA-ECC and existing concrete bonding interface[J]. Journal of Building Materials, 2019, (3): 356- 362
doi: 10.3969/j.issn.1007-9629.2019.03.005
11 FAN J, GOU S, DING R, et al Experimental and analytical research on the flexural behaviour of steel-ECC composite beams under negative bending moments[J]. Engineering Structures, 2020, 210: 110309.1- 110309.17
12 ZHANG Shi-hong, SHAO Xu-dong, CAO Jun-hui, et al Fatigue performance of a lightweight composite bridge deck with open ribs[J]. Journal of Bridge Engineering, 2016, 21 (7): 04016039
doi: 10.1061/(ASCE)BE.1943-5592.0000905
13 徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011 .
14 杨卫. 宏微观断裂力学[M]. 北京: 国防工业出版社, 1995.
15 REINHARDT H W, XU S Experimental determination of KIIC of normal strength concrete[J]. Materials and Structures, 1998, 31 (5): 296- 302
doi: 10.1007/BF02480670
16 REINHARDT H W, XU S A practical testing approach to determine mode II fracture energy GIIF for concrete[J]. International Journal of Fracture, 2000, 105 (2): 107- 125
doi: 10.1023/A:1007649004465
17 高洪波 . 混凝土Ⅰ型、Ⅱ型断裂参数确定的研究[D]. 大连: 大连理工大学, 2008 .
18 KEER L M, GUO Q Stress analysis for symmetrically loaded bonded layers[J]. International Journal of Fracture, 1990, 43: 69- 81
doi: 10.1007/BF00018127
19 HUANG Bo-tao, YIN Xing , LI Qing-hua, et al. Testing method for interface mode II fracture of plain concrete and fiber-reinforced cementitious composite [C]// 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Bayonne: Aedification Publishers, 2019.
20 SUO Z, HUTCHINSON J W Sandwich test specimens for measuring interface crack toughness[J]. Materials Science and Engineering A, 1989, 107: 135- 143
doi: 10.1016/0921-5093(89)90382-1
21 HUTCHINSON J W, SUO Z Mixed mode cracking in layered materials[J]. Advances in Applied Mechanics, 1991, 29 (8): 63- 191
22 RICE J R Elastic fracture concepts for interfacial cracks[J]. Journal of Applied Mechanics, 1988, 55 (1): 98- 103
doi: 10.1115/1.3173668
23 贾单锋, 廖小伟, 崔佳 Q345qD桥梁钢高周疲劳性能及γ-P-S-N曲线试验研究[J]. 天津大学学报:自然科学与工程技术版, 2016, 49 (Supple.1): 122- 128
JIA Dan-feng, LIAO Xiao-wei, CUI Jia Experimental study on high cycle fatigue behavior and γ-P-S-N curves of bridge steel Q345qD[J]. Journal of Tianjin University: Science and Technology, 2016, 49 (Supple.1): 122- 128
24 高延性纤维增强水泥基复合材料力学性能试验方法: JCT2461-2018 [S]. 北京: 中国计划出版社, 2018.
25 LI Dong-yang, HUANG Pei-yan, CHEN Zhan-biao, et al Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology[J]. Engineering Fracture Mechanics, 2020, (235): 107166
[1] 张静,邹道勤,王海龙,孙晓燕. 3D打印混凝土层条间界面抗拉性能与本构模型[J]. 浙江大学学报(工学版), 2021, 55(11): 2178-2185.
[2] 姚勇,杨贞军,张麒. 硅烷涂层提升钢纤维-砂浆界面性能的试验研究[J]. 浙江大学学报(工学版), 2021, 55(1): 1-9.
[3] 李庆华,舒程岚青. 超高韧性水泥基复合材料的波传播试验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 851-857.
[4] 夏晋,甘润立,方言,赵羽习,金伟良. 装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 491-498.
[5] 周爱民,周彩霞,欧阳晋焱,张书涛. 基于指标适度标准化的界面风格美综合评价模型[J]. 浙江大学学报(工学版), 2020, 54(12): 2273-2285.
[6] 刘俊伟, 朱娜, 王立忠, 尚文昌. 循环荷载下砂与钢板界面的弱化机制[J]. 浙江大学学报(工学版), 2018, 52(6): 1123-1130.
[7] 高冠, 朱瑞, 贺治国, 游景皓. 自由液面水流与固体构筑物作用的高精度数值模拟[J]. 浙江大学学报(工学版), 2018, 52(6): 1201-1208.
[8] 赵亮, 吕亚飞, 贺治国, 林颖典, 胡鹏, 林挺. 分层水体和障碍物对斜坡异重流运动特性的影响[J]. 浙江大学学报(工学版), 2017, 51(12): 2466-2473.
[9] 周二振,应济. 碳纳米管阵列/环氧树脂的导热导电性能[J]. 浙江大学学报(工学版), 2016, 50(9): 1671-1676.
[10] 王春江, 朱震宇, 李向民, 蒋利学, 许清风. 砌体墙侧向受力性能精细有限元模拟[J]. 浙江大学学报(工学版), 2016, 50(6): 1024-1030.
[11] 刘慧, 冯志全, 梁丽伟, 徐治鹏. 虚拟界面自然交互模型与算法[J]. 浙江大学学报(工学版), 2016, 50(6): 1167-1175.
[12] 刘莉, 杨银堂. SiC/SiO2界面形貌对SiC MOS器件沟道迁移率的影响[J]. 浙江大学学报(工学版), 2016, 50(2): 392-396.
[13] 何光辉,汪德江,杨骁. 考虑界面不可压的高阶组合梁静力弯曲——位移法与混合型的有限元分析[J]. 浙江大学学报(工学版), 2015, 49(9): 1716-1724.
[14] 王春江, 朱震宇, 李向民, 蒋利学, 许清风. 砌体墙侧向受力性能精细有限元模拟[J]. 浙江大学学报(工学版), 2015, 49(12): 2425-2431.
[15] 张诚成, 朱鸿鹄, 唐朝生, 施斌. 纤维加筋土界面渐进性破坏模型[J]. 浙江大学学报(工学版), 2015, 49(10): 1952-1959.