Please wait a minute...
浙江大学学报(工学版)
电信技术     
SiC/SiO2界面形貌对SiC MOS器件沟道迁移率的影响
刘莉, 杨银堂
西安电子科技大学 微电子学院,陕西 西安 710071
Effection of morphology of SiC/SiO2 interface on mobility characteristics of MOS devices
LIU Li, YANG Yin tang
 Microelectronics Institute,Xi Dian University,Xi’an Shaanxi 710071 China
 全文: PDF(846 KB)   HTML
摘要:

为了研究SiC/SiO2界面粗糙度对SiC MOS器件构道迁移率的影响,在离子注入后高温退火过程中采用碳膜保护SiC表面以减小退火过程中产生的表面粗糙度,碳膜的形成通过对光刻胶在600 ℃下前烘30 min实现.研究结果表明:微结构分析所得的微米量级的横向表面粗糙度(峰对峰,谷对谷)不会影响电子平均自由程为纳米数量级的沟道电子在SiC MOS器件沟道中的迁移运动,在高温退火过程中,碳膜的是否存在对表面粗糙度和NMOS电容SiC/SiO2界面态密度没有影响,而且NMOSFET器件的场效应迁移率没有发生太大的变化.

Abstract:

To investigate the effects of SiC/SiO2 interface roughness on the mobility of 4H SiC MOS capacitors and MOSFETs, carbon cap protection to the surface of SiC was used to reduce the surface roughness during high temperature annealing after ion implantation. Carbon cap is formed by annealing photo resistant for 30min. It is shown that because micro scale lateral surface roughness (peak to peak/valley to valley) does not affect the movement of channel electrons with nm scale mean free path in the SiC MOS channel, so in the duration of the high temperature annealing regardless of where there is carbon cap existence or not and surface roughness is changed or not, the Dit measured from NMOS capacitors are almost identical and channel mobility in the MOSFET do not been changed ultimately.

出版日期: 2016-02-01
:  TN 43  
基金资助:

国家自然科学基金青年基金资助项目(61404096);国家自然科学基金重点资助项目(61334003).

作者简介: 刘莉(1979—),女,博士,从事宽禁带半导体材料与器件的研究. ORCID: 0000 0002 2362 3812.E-mail: liuli@mail.xidian.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘莉, 杨银堂. SiC/SiO2界面形貌对SiC MOS器件沟道迁移率的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.02.027.

LIU Li, YANG Yin tang. Effection of morphology of SiC/SiO2 interface on mobility characteristics of MOS devices. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.02.027.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.02.027        http://www.zjujournals.com/eng/CN/Y2016/V50/I2/392

[1] ZHOU Wei cheng, ZHONG Xue qian, SHENG Kuang. High temperature stability and the performance degradation of SiC MOSFET [J]. IEEE Transaction On Power Electronics, 2014, 29(5): 2329-2337.
[2] FIORENZA P, SWANSON L K, VIVONA M. Comparative study of gate oxide in 4H SiC lateral MOSFETs subjected to post deposition annealing in N2O and POCl3[J]. Applied Physics A: Material Science. and Processing,2013: 1-7.
[3] ROCCAFORTER F, FIORENZA P, GIANNAZZO F. Impact of the morphological and electrical properties of SiO2/4H SiC interfaces on the behavior of 4H SiC MOSFET[J].ECS Journal of Solid State Science and Technology, 2013, 2(8): N3006-N3011.
[4] FIORENZA P, GIANNAZZO F, SWANSON L. A look underneath the SiO2/4H SiC interface after N2O thermal treatments[J]. Beilstein Journal of Nanotechnology,2013, 4: 249-254.
[5] NAIK H K. TANG T P. Chow, Effect of Graphite cap for implant activation on inversion channel mobility in 4H SiC mosfet[J]. Material Science Forum, 2009: 615617: 773-776.
[6] KHANNA V K. Physics of carrier transport mechanisms and ultra small scale phenomena for theoretical modeling of nanometer MOS transistors from diffusive to ballistic regimes of operation[J], Physics Reports, 2004: 398, 67.
[7] LIU LI, YANG YIN TANG, MA XIAO HUA. The electrical characteristics of a 4H silicon carbide metal insulator semiconductor structure with Al2O3 as the gate dielectric[J].Chinese Physics B, 2011,20 (12): 1272048.
[8] LIU GANG, XU YI, XU CAN. Effects and mechanisms of RIE on SiC inversion layer mobility and its recovery[J]. Applied Surface Science, 2015, 324: 30-34.
[9] DHAR S, HANEY S, CHENG L. Inversion layer carrier concentration and mobility in 4H SiC metal oxide semiconductor field effect transistors [J]. Journal of Applied Physics: 2007: 556-557: 835.

[1] 郝子轶, 项晓燕, 陈晨, 孟建熠. 轻量级现场纠正的错误消除寄存器设计[J]. 浙江大学学报(工学版), 2017, 51(3): 605-611.
[2] 方瑜骅, 赵梦恋, 袁奋杰, 吴晓波. 带有无损电流检测的高效率可重构DC-DC变换器[J]. 浙江大学学报(工学版), 2014, 48(10): 1856-1864.
[3] 姜伟,赵野. 开关电源的多模式控制策略及实现[J]. 浙江大学学报(工学版), 2014, 48(9): 1580-1585.
[4] 宁志华,何乐年,胡志成. 一种高压高可靠性开关电源控制芯片[J]. J4, 2014, 48(3): 377-383.
[5] 雷鑑铭, 胡北稳, 桂涵姝, 张乐. 采用新型低成本共模反馈电路的全差分运放设计[J]. J4, 2013, 47(10): 1777-1783.
[6] 张波,潘伟伟,叶翼,郑勇军,史峥,严晓浪. 基于模块化单元的测试结构阵列设计及其应用[J]. J4, 2013, 47(5): 837-842.
[7] 代国定, 陈跃, 杨令, 袁政, 黄冲. 集成式斜波产生与求和电路的设计实现[J]. J4, 2013, 47(1): 83-87.
[8] 杭国强, 李锦煊, 王国飞. 新型钟控神经元MOS采样/保持电路[J]. J4, 2012, 46(2): 333-337.
[9] 韩雁 , 廖璐 , 黄小伟 , 张昊 , 王昊. 多比特量化的音频DAC中模拟电路的设计[J]. J4, 2011, 45(9): 1571-1575.
[10] 肖林荣, 陈偕雄, 应时彦. 基于模块化技术的最佳ULG.2的QCA电路设计[J]. J4, 2011, 45(6): 1032-1037.
[11] 苑婷,何乐年,柯徐刚. 离线式开关电源控制器芯片的设计与实现[J]. J4, 2010, 44(11): 2130-2136.
[12] 代国定,徐洋,李卫敏,黄鹏. 高性能分段温度曲率补偿基准电压源设计[J]. J4, 2010, 44(11): 2142-2147.
[13] 徐扬, 沈继忠. 基于门控时钟的低功耗时序电路设计新方法[J]. J4, 2010, 44(9): 1724-1729.
[14] 徐科君, 许文曜, 沈继忠, 等. 双电压动态可重构FPGA任务模型及调度算法[J]. J4, 2010, 44(2): 300-304.
[15] 杨旸, 赵梦恋, 陆佳颖, 等. 高亮度白光LED驱动控制器设计[J]. J4, 2010, 44(1): 111-117.