Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (3): 491-498    DOI: 10.3785/j.issn.1008-973X.2020.03.009
土木工程     
装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究
夏晋1(),甘润立1,方言1,赵羽习1,金伟良1,2
1. 浙江大学 建筑工程学院,浙江 杭州 310012
2. 浙江大学宁波理工学院,浙江 宁波 315100
Experimental study on direct shear performance of concrete-concrete interface of prefabricated structure sleeve grouting connection
Jin XIA1(),Run-li GAN1,Yan FANG1,Yu-xi ZHAO1,Wei-liang JIN1,2
1. College of Civil Engineering and Architecture Zhejiang University, Hangzhou 310012, China
2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
 全文: PDF(1342 KB)   HTML
摘要:

研究灌浆层厚度、纵向钢筋、配筋率、轴向压力等因素对直剪荷载作用下套筒灌浆连接的混凝土结合界面裂缝开展、破坏形态、直剪剪切强度、裂缝-滑移曲线以及荷载-滑移曲线的影响. 试验结果表明:对于无纵向钢筋试件结合界面,灌浆层厚度为1、10 mm界面的破坏荷载均值分别是灌浆层厚度为20 mm界面的1.69、1.14倍;对于纵向配筋结合界面,配筋率为0.9%、1.8%的试件界面破坏荷载均值分别是无筋试件界面的1.58、1.89倍,且结合界面直剪破坏延性显著提高,但由于未配箍筋,最终破坏形态为混凝土被纵向钢筋劈裂破坏,降低了结合界面的直剪剪切强度和延性;对于施加轴向压力试件,轴向压力为11.6、23.2 MPa的试件界面破坏荷载分别为无轴压试件界面的6.06、7.81倍,在23.2 MPa轴向压力下,破坏模式转化为界面破坏后的现浇部分混凝土本体破坏.

关键词: 装配式混凝土结构套筒灌浆结合界面灌浆层厚度纵向钢筋轴向压力直剪性能    
Abstract:

The effects of grouting layer thickness, longitudinal reinforcement, reinforcement ratio and axial pressure on cracking development, failure pattern, direct shear strength, crack-slip curve and load-slip curve of concrete-concrete interface under direct shear loading were studied. The test results show that, for the interface without longitudinal reinforcement, the average failure loads of the specimens on the grouting layer with thickness of 1 and 10 mm were 1.69 and 1.14 times of that with the thickness of 20 mm, respectively. For the concrete-concrete interface with longitudinal steel bars, the average failure loads of the specimens with the reinforcement ratio of 0.9% and 1.8% were 1.58 and 1.89 times of that of the unreinforced specimens, respectively. In addition, the ductility of interfacial direct shear failure is significantly improved. However, for the reinforced specimens without stirrups, the failure pattern developed into concrete splitting failure by longitudinal steel bars, which can reduce the direct shear strength and ductility of the concrete-concrete interface. For the concrete-concrete interface under axial pressure, the average failure loads of the specimens under axial compressive stress of 11.6 and 23.2 MPa were 6.06 and 7.81 times of that of the unpressurized specimens, respectively. Under axial pressure of 23.2 MPa, the failure mode is transformed into the failure of cast-in-place concrete after the interface failure.

Key words: prefabricated concrete structure    sleeve grouting    concrete-concrete interface    thickness of grouting layer    longitudinal reinforcement    axial pressure    direct shear performance
收稿日期: 2019-01-05 出版日期: 2020-03-05
CLC:  TU 375  
基金资助: 国家自然科学基金资助项目(51778566);浙江省自然科学基金重点资助项目(LZ16E080002);国家重点研发计划资助项目(2016YFC0701406);中央高校基本科研业务费专项资助(2018FZA4018);浙江省交通投资集团有限公司科技资助项目(201812)
作者简介: 夏晋(1982—),男,副教授,从事混凝土结构耐久性研究. orcid.org/0000-0002-5569-5650. E-mail: xiajin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
夏晋
甘润立
方言
赵羽习
金伟良

引用本文:

夏晋,甘润立,方言,赵羽习,金伟良. 装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 491-498.

Jin XIA,Run-li GAN,Yan FANG,Yu-xi ZHAO,Wei-liang JIN. Experimental study on direct shear performance of concrete-concrete interface of prefabricated structure sleeve grouting connection. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 491-498.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.009        http://www.zjujournals.com/eng/CN/Y2020/V54/I3/491

图 1  结合界面直剪试件尺寸与配筋示意图
灌浆料参数 L0/mm L1/mm fc1/MPa fc2/MPa fc3/MPa
标准指标 ≥300 ≥260 ≥35 ≥60 ≥85
检测指标 350 300 45.8 70.3 86.7
表 1  灌浆料技术指标和材料性能
混凝土强度等级 水泥 减水剂 河砂 石子
C30 434 6.3 620 1157 189
C35 490 6.6 595 1119 196
表 2  预制和现浇部分混凝土配合比
试件编号 t/mm n r/% Fn/kN σn/MPa
  注:试件结合界面尺寸均为150 mm×150 mm,预制混凝土表面均切槽处理,每组试件数量为3.
A-1 20
A-2 10
A-3 1
B-1 20 1 16 0.9
B-2 20 2 16 1.8
C-1 20 262 11.6
C-2 20 524 23.2
表 3  C-1、C-2组试件基本参数
图 2  混凝土结合界面直剪试验装置图
图 3  结合界面裂缝的典型发展过程
试件编号 Fc / kN Fca / kN sc / mm Fmax / kN Fmaxa / kN R sF,max / mm 试件破坏模式
A-1-1 75 83.0 0.066 1 82 88.3 1.00 0.072 2 界面破坏
A-1-2 84 0.064 0 89 0.081 6
A-1-3 90 0.070 4 94 0.080 1
A-2-1 86 93.3 0.026 8 96 101.0 1.14 0.034 5
A-2-2 86 0.041 0 90 0.051 6
A-2-3 108 0.026 1 117 0.037 0
A-3-1 167 143.3 0.028 0 152 149.3 1.69 0.028 0
A-3-2 158 0.012 3 158 0.012 3
A-3-3 105 0.026 1 138 0.026 1
B-1-1 124 90.0 0.042 5 145 139.3 1.58 1.402 0 界面破坏,下降段发生
局部破坏
B-1-2 76 0.151 2 133 1.617 3
B-1-3 70 0.132 8 140 0.734 0
B-2-1 76 96.3 0.121 0 175 166.7 1.89 2.659 0
B-2-2 85 0.142 9 154 1.129 2
B-2-3 128 0.401 3 171 2.016 8
C-1-1 368 367.0 2.939 0 526 535.0 6.06 5.268 0 界面破坏
C-1-2 351 2.133 7 524 5.000 4
C-1-3 382 2.124 5 555 3.872 1
C-2-1 538 483.7 2.629 8 730 690.0 7.81 3.441 0 界面破坏伴随局部裂缝
C-2-2 468 2.775 1 660 4.250 0
C-2-3 445 2.000 5 680 2.792 1
表 4  混凝土结合界面直剪试验结果
图 4  试件直剪破坏形态
图 5  不同灌浆层厚度裂缝宽度-竖向相对滑移曲线
图 6  不同灌浆层厚度荷载-竖向相对滑移曲线
图 7  不同配筋率裂缝宽度-竖向相对滑移曲线
图 8  不同配筋率荷载-竖向相对滑移曲线
图 9  不同轴向压力下裂缝宽度-竖向相对滑移曲线
图 10  不同轴向压力下荷载-竖向相对滑移曲线
1 陈云钢, 刘家彬, 郭正兴, 等 装配式剪力墙水平拼缝钢筋浆锚搭接抗震性能试验[J]. 哈尔滨工业大学学报, 2013, 45 (6): 83- 89
CHEN Yun-gang, LIU Jia-bin, GUO Zheng-xing, et, al Test on seismic performance of precast shear wall with reinforcements grouted in holes and spliced indirectly in horizontal connections[J]. Journal of Harbin Institute of Technology, 2013, 45 (6): 83- 89
2 胡文博, 翟希梅, 姜洪斌 预制装配式钢筋混凝土一体化剪力墙抗震性能研究及构造方案优化[J]. 建筑结构学报, 2016, 37 (8): 1- 10
HU Wen-bo, ZHAI Xi-mei, JIANG Hong-bin Study on seismic performance and construction measures optimization of precast fabricated RC integration shear wall[J]. Journal of Building Structures, 2016, 37 (8): 1- 10
3 装配式混凝土结构技术规程: JGJ 1-2014[S]. 北京: 中国建筑工业出版社, 2014.
4 郭进军. 高温后新老混凝土粘结的力学性能研究[D]. 大连理工大学, 2003.
Guo Jin-jun. Study on mechanics performance of adherence of new and old concrete after high temperature[D]. Dalian: Dalian University of Tecnology, 2003.
5 陈峰, 郑建岚 自密实混凝土与老混凝土粘结强度的直剪试验研究[J]. 建筑结构学报, 2007, 28 (1): 59- 63
CHEN Feng, ZHENG Jian-lan Experimental research on direct shear behavior of adhesion of self-compacting concrete on existing concrete[J]. Journal of Building Structures, 2007, 28 (1): 59- 63
doi: 10.3321/j.issn:1000-6869.2007.01.009
6 肖成志, 田稳苓, 刘波, 等 设置界面构造锚筋的新老混凝土粘结性能试验研究[J]. 建筑结构学报, 2011, 32 (1): 75- 81
XIAO Cheng-zhi, TIAN Wen-ling, LIU Bo, et, al Experimental study on bonding properties of young and old concrete with constructional steel bar[J]. Journal of Building Structures, 2011, 32 (1): 75- 81
7 SANTOS P, JULIO E N B S A state-of-the-art review on roughness quantification methods for concrete surfaces[J]. Construction and Building Materials, 2013, 38 (1): 912- 923
8 MATTOCK A H Shear friction and high-strength concrete[J]. ACI Structural Journal, 2001, 98 (1): 50- 59
9 SUN C, LANGE D A, XIAO J, et al Contact behavior between cracked surfaces of recycled aggregate concrete[J]. Construction and Building Materials, 2017, 155: 1168- 1178
doi: 10.1016/j.conbuildmat.2017.08.125
10 MANSUR M A, VINAVAGAM T, TAN K H Shear transfer across a crack in reinforced high-strength concrete[J]. Journal of Materials in Civil Engineering, 2008, 20 (4): 294- 302
doi: 10.1061/(ASCE)0899-1561(2008)20:4(294)
11 RANDL N Design recommendations for interface shear transfer in fib Model Code 2010[J]. Structual Concrete, 2013, 14 (3): 230- 241
doi: 10.1002/(ISSN)1751-7648
12 SOETENS T, MATTHYS S Shear-stress transfer across a crack in steel fibre-reinforced concrete[J]. Cement and Concrete Composites, 2017, 82: 1- 13
doi: 10.1016/j.cemconcomp.2017.05.010
13 KWON S J, YANG K H, HWANG Y H, et al Shear friction strength of monolithic concrete interfaces[J]. Magazine of Concrete Research, 2017, 69 (5): 230- 244
doi: 10.1680/jmacr.16.00190
14 LI P, AN X, HE S, et al Three-dimensional bond model considering the coupled damage effect for dowel action[J]. Magazine of Concrete Research, 2017, 69 (14): 728- 744
doi: 10.1680/jmacr.16.00051
15 李鹏飞, 安雪晖, 何世钦, 等 考虑混凝土损伤效应的销栓作用承载力计算模型[J]. 清华大学学报: 自然科学版, 2016, 56 (12): 1255- 1263
LI Peng-fei, AN Xue-hui, HE Shi-qin, et, al Mathematical model for dowel bearing capacity considering the effect of concrete damage[J]. Tsinghua Science and Technology, 2016, 56 (12): 1255- 1263
16 叶果. 新老混凝土界面抗剪性能研究[D]. 重庆: 重庆大学, 2011.
Ye Guo. Study on the anti-shear behavior of bond-interface between new and old concrete[D]. Chongqing: Chongqing University, 2011.
17 吴刚, 冯德成 装配式混凝土框架节点基本性能研究进展[J]. 建筑结构学报, 2018, 39 (2): 1- 16
WU Gang, FENG De-cheng Research progress on fundamental performance of precast concrete frame beam-to-column connections[J]. Journal of Building Structures, 2018, 39 (2): 1- 16
18 薛伟辰, 褚明晓, 刘亚男, 等 高轴压比下新型预制混凝土剪力墙抗震性能[J]. 哈尔滨工程大学学报, 2018, 39 (3): 1106- 1110
XUE Wei-chen, CHU Ming-xiao, LIU Ya-nan, et, al Seismic performance of new precast concrete shear wall under high axial compression ratio[J]. Journal of Harbin Engineering University, 2018, 39 (3): 1106- 1110
19 钢筋连接用套筒灌浆料: JGT 408-2013[S]. 北京: 中国标准出版社, 2013
20 张雷顺, 韩菊红, 郭进军, 等 新老混凝土粘结补强在某钢筋混凝土桥面板加固整修中的应用[J]. 土木工程学报, 2003, 36 (4): 82- 85
ZHANG Lei-shun, HAN Ju-hong, GUO Jin-jun, et, al Application of bond between new and old concrete to strengthen RC bridge-deck[J]. China Civil Engineering Journal, 2003, 36 (4): 82- 85
doi: 10.3321/j.issn:1000-131X.2003.04.014
21 祝玉麒. 桩基托换工程中的托换结构分析[D]. 杭州: 浙江大学, 2017
ZHU Yu-qi. Structural analysis of underpinning engineering of pile foundation[D]. Hangzhou: Zhejiang University, 2017
22 邢强. 新旧混凝土界面的连接方法及受力性能研究[D]. 西安: 西安科技大学, 2012
XING Qiang. Research on the connecting method and mechanical behavior of bond-interface between new and old concrete[D]. Xi’an: Xi’an University of Science and Technology, 2012
[1] 黄祖慰,雷俊卿,桂成中,郭殊伦. 斜拉桥正交异性钢桥面板疲劳试验研究[J]. 浙江大学学报(工学版), 2019, 53(6): 1071-1082.