计算机技术 |
|
|
|
|
基于改进RT-DETR的牛仔面料疵点检测算法 |
梁耕良1( ),韩曙光2,*( ) |
1. 浙江理工大学 计算机科学与技术学院(人工智能学院),浙江 杭州 310018 2. 浙江理工大学 理学院,浙江 杭州 310018 |
|
Denim fabric defect detection algorithm based on improved RT-DETR |
Gengliang LIANG1( ),Shuguang HAN2,*( ) |
1. School of Computer Science and Technology (School of Artificial Intelligence), Zhejiang Sci-Tech University, Hangzhou 310018, China 2. School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China |
1 |
张缓缓, 马金秀, 景军锋, 等 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40 (12): 50- 56 ZHANG Huanhuan, MA Jinxiu, JING Junfeng, et al Fabric defect detection method based on improved fast weighted Median filtering and K-means[J]. Journal of Textile Research, 2019, 40 (12): 50- 56
|
2 |
郑兆伦, 鲁玉军 基于奇异值分解的双算法织物缺陷检测[J]. 纺织学报, 2022, 43 (11): 59- 67 ZHENG Zhaolun, LU Yujun Dual-algorithm for fabric defect detection based on singular value decomposition[J]. Journal of Textile Research, 2022, 43 (11): 59- 67
|
3 |
周文明, 周建, 潘如如 应用上下文视觉显著性的色织物疵点检测[J]. 纺织学报, 2020, 41 (8): 39- 44 ZHOU Wenming, ZHOU Jian, PAN Ruru Yarn-dyed fabric defect detection based on context visual saliency[J]. Journal of Textile Research, 2020, 41 (8): 39- 44
|
4 |
闫本超, 潘如如, 周建, 等 基于改进Itti显著模型的织物疵点实时检测[J]. 纺织学报, 2023, 44 (7): 95- 102 YAN Benchao, PAN Ruru, ZHOU Jian, et al Real-time detection of fabric defects based on use of improved Itti salient model[J]. Journal of Textile Research, 2023, 44 (7): 95- 102
|
5 |
GIRSHICK R. Fast R-CNN [C]// IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440–1448.
|
6 |
王安静, 袁巨龙, 朱勇建, 等 基于改进YOLOv8s的鼓形滚子表面缺陷检测算法[J]. 浙江大学学报: 工学版, 2024, 58 (2): 370- 380,387 WANG Anjing, YUAN Julong, ZHU Yongjian, et al Drum roller surface defect detection algorithm based on improved YOLOv8s[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (2): 370- 380,387
|
7 |
张艳, 孙晶雪, 孙叶美, 等 基于分割注意力与线性变换的轻量化目标检测[J]. 浙江大学学报: 工学版, 2023, 57 (6): 1195- 1204 ZHANG Yan, SUN Jingxue, SUN Yemei, et al Lightweight object detection based on split attention and linear transformation[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (6): 1195- 1204
|
8 |
LIU B, WANG H, CAO Z, et al PRC-light YOLO: an efficient lightweight model for fabric defect detection[J]. Applied Sciences, 2024, 14 (2): 938
doi: 10.3390/app14020938
|
9 |
CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers [C]// European Conference on Computer Vision. Cham: Springer, 2020: 213–229.
|
10 |
ZHANG H, LI F, LIU S, et al. DINO: detr with improved DeNoising anchor boxes for end-to-end object detection [EB/OL]. (2022-03-07) [2024-02-24]. https://arxiv.org/abs/2203.03605v4.
|
11 |
ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 16965–16974.
|
12 |
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17) [2024-02-26]. https://arxiv.org/abs/1704.04861v1.
|
13 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1580–1589.
|
14 |
MA N, ZHANG X, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design [C]// European Conference on Computer. Cham: Springer, 2018: 122–138.
|
15 |
CHEN J, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 12021–12031.
|
16 |
OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning [C]// IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island: IEEE, 2023: 1–5.
|
17 |
ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection [EB/OL]. (2020-10-08) [2024-02-26]. https://arxiv.org/abs/2010.04159v4.
|
18 |
WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection [EB/OL]. (2021-10-26) [2024-02-26]. https://arxiv.org/abs/2110.13389v2.
|
19 |
LIU W, LU H, FU H, et al. Learning to upsample by learning to sample [EB/OL]. (2023-8-29) [2024-02-26]. https://arxiv.org/abs/2308.15085v1.
|
20 |
XU G, LIAO W, ZHANG X, et al Haar wavelet downsampling: a simple but effective downsampling module for semantic segmentation[J]. Pattern Recognition, 2023, 143: 109819
doi: 10.1016/j.patcog.2023.109819
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|